Semi-definite relaxations for optimal control problems with oscillation and concentration effects
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 95-117.

Converging hierarchies of finite-dimensional semi-definite relaxations have been proposed for state-constrained optimal control problems featuring oscillation phenomena, by relaxing controls as Young measures. These semi-definite relaxations were later on extended to optimal control problems depending linearly on the control input and typically featuring concentration phenomena, interpreting the control as a measure of time with a discrete singular component modeling discontinuities or jumps of the state trajectories. In this contribution, we use measures introduced originally by DiPerna and Majda in the partial differential equations literature to model simultaneously, and in a unified framework, possible oscillation and concentration effects of the optimal control policy. We show that hierarchies of semi-definite relaxations can also be constructed to deal numerically with nonconvex optimal control problems with polynomial vector field and semialgebraic state constraints.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015041
Classification : 49M20, 49J15, 49N25, 90C22
Mots-clés : Optimal control, relaxed control, impulsive control, semidefinite programming
Claeys, Mathieu 1 ; Henrion, Didier 2, 3, 4 ; Kruıžík, Martin 5, 6

1 Avenue Edmond Cordier 19, 1160 Auderghem, Belgium
2 CNRS-LAAS, 7 Avenue du colonel Roche, 31400 Toulouse, France
3 Université de Toulouse, LAAS, 31400 Toulouse, France
4 Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 26 Prague, Czech Republic
5 Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic, Pod vodárenskou veíž 4, 182 08, Prague, Czech Republic
6 Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, CZ-166 29 Prague, Czech Republic
@article{COCV_2017__23_1_95_0,
     author = {Claeys, Mathieu and Henrion, Didier and Kru{\i}\v{z}{\'\i}k, Martin},
     title = {Semi-definite relaxations for optimal control problems with oscillation and concentration effects},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {95--117},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015041},
     mrnumber = {3601017},
     zbl = {1358.49026},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015041/}
}
TY  - JOUR
AU  - Claeys, Mathieu
AU  - Henrion, Didier
AU  - Kruıžík, Martin
TI  - Semi-definite relaxations for optimal control problems with oscillation and concentration effects
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 95
EP  - 117
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015041/
DO  - 10.1051/cocv/2015041
LA  - en
ID  - COCV_2017__23_1_95_0
ER  - 
%0 Journal Article
%A Claeys, Mathieu
%A Henrion, Didier
%A Kruıžík, Martin
%T Semi-definite relaxations for optimal control problems with oscillation and concentration effects
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 95-117
%V 23
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015041/
%R 10.1051/cocv/2015041
%G en
%F COCV_2017__23_1_95_0
Claeys, Mathieu; Henrion, Didier; Kruıžík, Martin. Semi-definite relaxations for optimal control problems with oscillation and concentration effects. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 95-117. doi : 10.1051/cocv/2015041. http://archive.numdam.org/articles/10.1051/cocv/2015041/

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, UK (2000). | MR | Zbl

E.J. Anderson and P. Nash, Linear programming in infinite-dimensional spaces: theory and applications. Wiley (1987). | MR | Zbl

A. Barvinok, A course in convexity. American Mathematical Society, Providence, NJ (2002). | MR | Zbl

A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, Philadelphia (2001). | MR | Zbl

A. Blaquière, Impulsive optimal control with finite or infinite time horizon. J. Optim. Theory Appl. 46 (1985) 431–439. | DOI | MR | Zbl

A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls. Unione Matematica Italiana. Bollettino B. 2 (1988) 641–656. | MR | Zbl

A.E. Bryson and Y.C. Ho, Applied optimal control theory. Ginn & Co., Waltham (1969).

M. Claeys, Mesures d’occupation et relaxations semi-définies pour la commande optimale. Ph.D. thesis (in French), University of Toulouse (2013).

M. Claeys and R.J. Sepulchre, Reconstructing trajectories from the moments of occupation measures. Proc. of the IEEE Conference on Decision and Control (2014).

M. Claeys, D. Arzelier, D. Henrion and J.-B. Lasserre, Measures and LMIs for non-linear optimal impulsive control. IEEE Trans. Automat. Cont. 59 (2014) 1374–1379. | DOI | MR | Zbl

R.J. Diperna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987) 667–689. | DOI | MR | Zbl

V.A. Dykhta and O.N. Samsonyuk, Hamilton−Jacobi inequalities in control problems for impulsive dynamical systems. Proc. of the Steklov Institute of Mathematics 271 (2010) 86–102. | DOI | MR | Zbl

H.O. Fattorini, Infinite dimensional optimization and control theory. Cambridge University Press, UK (1999). | MR | Zbl

I. Fonseca and M. Kruížk, Oscillations and concentrations generated by 𝒜-free mappings and weak lower semicontinuity of integral functionals. ESAIM: COCV 16 (2010) 472–502. | Numdam | MR | Zbl

V. Gaitsgory and M. Quincampoix, Linear programming approach to deterministic infinite horizon optimal control problems with discounting. SIAM J. Control Optim. 48 (2009) 2480–2512. | DOI | MR | Zbl

R.V. Gamkrelidze, Principles of optimal control theory. Plenum Press, New York (1978). | MR | Zbl

W.M. Getz and D.H. Martin, Optimal control systems with state variable jump discontinuities. J. Optim. Theory Appl. 31 (1980) 195–205. | DOI | MR | Zbl

D. Henrion and M. Korda, Convex computation of the region of attraction of polynomial control systems. IEEE Trans. Automat. Contr. 59 (2014) 297–312. | DOI | MR | Zbl

D. Henrion, J.-B. Lasserre and J. Löfberg, Gloptipoly 3: Moments, optimization and semidefinite programming. Optim. Methods Soft. 24 (2009) 761–779. | DOI | MR | Zbl

A. Kałamajska and M. Kruížk, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. | Numdam | MR | Zbl

A. Kałamajska, S. Krömer and M. Kruížk, Sequential weak continuity of null Lagrangians at the boundary. Calc. Var. 49 (2014) 1263–1278. | DOI | MR | Zbl

M. Kruížk and M. Luskin, The computation of martensitic microstructure with piecewise laminates. J. Sci. Comput. 19 (2003) 293–308. | DOI | MR | Zbl

M. Kruížk and T. Roubíček, On the measures of DiPerna and Majda. Math. Bohemica 122 (1997) 383–399. | DOI | MR | Zbl

M. Kruížk and T. Roubíček, Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim. 20 (1999) 511–530. | DOI | MR | Zbl

J.-B. Lasserre, Positive polynomials and their applications. Imperial College Press, London, UK (2010). | MR | Zbl

J.B. Lasserre, C. Prieur and D. Henrion, Nonlinear optimal control: numerical approximation via moments and LMI relaxations. Proc. of IEEE Conf. Decision and Control and Europ. Control Conf. Sevilla, Spain (2005).

J.-B. Lasserre, D. Henrion, C. Prieur and E. Trélat, Nonlinear optimal control via occupation measures and LMI relaxations. SIAM J. Control Optim. 47 (2008) 1643–1666. | DOI | MR | Zbl

R. Meziat, D. Patino and P. Pedregal, An alternative approach for non-linear optimal control problems based on the method of moments. Comput. Optim. Appl. 38 (2007) 147–171. | DOI | MR | Zbl

R. Meziat, T. Roubíček and D. Patino, Coarse-convex-compactification approach to numerical solution of nonconvex variational problems. Numer. Functional Anal. Optim. 31 (2010) 460–488. | DOI | MR | Zbl

B. Miller and E. Ya. Rubinovich, Impulsive control in continuous and discrete-continuous systems. Springer, Berlin (2003). | MR | Zbl

M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Diff. Integral Eqs. 8 (1995) 269–288. | MR | Zbl

L.W. Neustadt, Optimization, a moment problem and nonlinear programming. SIAM J. Control 2 (1964) 33–53. | MR | Zbl

T. Roubíček, Relaxation in optimization theory and variational calculus. W. de Gruyter, Berlin (1997). | MR | Zbl

T. Roubíček, M. Kružík Adaptive approximation algorithm for relaxed optimization problems In Proc. of Fast Solutions of Discrete Optimization Problems held in WIAS, Berlin, May (2000) 8–12, edited by V. Schulz, K.-H. Hoffmann and R.H.W. Hoppe. Birkhäser, Basel (2001). | MR | Zbl

H.L. Royden and P. Fitzpatrick, Real analysis, 4th edition. Prentice Hall, NJ (2010). | Zbl

J. Souček, Spaces of functions on domain Ω, whose kth derivatives are measures defined on Ω ¯. Časopis Pro Pěstování Mat. 97 (1972) 10–46. | DOI | MR | Zbl

E.M. Stein and R. Shakarchi, Princeton lectures on analysis III. Real analysis: measure theory, integration, and Hilbert spaces. Princeton University Press, Princeton, NJ (2005). | MR | Zbl

J.F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12 (1999) 625–653. | DOI | MR | Zbl

R. Vinter, Convex duality and nonlinear optimal control. SIAM J. Control Optim. 31 (1993) 518–538. | DOI | MR | Zbl

R. Vinter and R. Lewis, The equivalence of strong and weak formulations for certain problems in optimal control. SIAM J. Control Optim. 16 (1978) 546–570. | DOI | MR | Zbl

L.C. Young, Lectures on the calculus of variations and optimal control theory. W.B. Saunders Co., Philadelphia, NJ (1969). | MR | Zbl

Cité par Sources :