Converging hierarchies of finite-dimensional semi-definite relaxations have been proposed for state-constrained optimal control problems featuring oscillation phenomena, by relaxing controls as Young measures. These semi-definite relaxations were later on extended to optimal control problems depending linearly on the control input and typically featuring concentration phenomena, interpreting the control as a measure of time with a discrete singular component modeling discontinuities or jumps of the state trajectories. In this contribution, we use measures introduced originally by DiPerna and Majda in the partial differential equations literature to model simultaneously, and in a unified framework, possible oscillation and concentration effects of the optimal control policy. We show that hierarchies of semi-definite relaxations can also be constructed to deal numerically with nonconvex optimal control problems with polynomial vector field and semialgebraic state constraints.
Accepted:
DOI: 10.1051/cocv/2015041
Keywords: Optimal control, relaxed control, impulsive control, semidefinite programming
@article{COCV_2017__23_1_95_0, author = {Claeys, Mathieu and Henrion, Didier and Kru{\i}\v{z}{\'\i}k, Martin}, title = {Semi-definite relaxations for optimal control problems with oscillation and concentration effects}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {95--117}, publisher = {EDP-Sciences}, volume = {23}, number = {1}, year = {2017}, doi = {10.1051/cocv/2015041}, mrnumber = {3601017}, zbl = {1358.49026}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2015041/} }
TY - JOUR AU - Claeys, Mathieu AU - Henrion, Didier AU - Kruıžík, Martin TI - Semi-definite relaxations for optimal control problems with oscillation and concentration effects JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 95 EP - 117 VL - 23 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2015041/ DO - 10.1051/cocv/2015041 LA - en ID - COCV_2017__23_1_95_0 ER -
%0 Journal Article %A Claeys, Mathieu %A Henrion, Didier %A Kruıžík, Martin %T Semi-definite relaxations for optimal control problems with oscillation and concentration effects %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 95-117 %V 23 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2015041/ %R 10.1051/cocv/2015041 %G en %F COCV_2017__23_1_95_0
Claeys, Mathieu; Henrion, Didier; Kruıžík, Martin. Semi-definite relaxations for optimal control problems with oscillation and concentration effects. ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 1, pp. 95-117. doi : 10.1051/cocv/2015041. http://archive.numdam.org/articles/10.1051/cocv/2015041/
L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, UK (2000). | MR | Zbl
E.J. Anderson and P. Nash, Linear programming in infinite-dimensional spaces: theory and applications. Wiley (1987). | MR | Zbl
A. Barvinok, A course in convexity. American Mathematical Society, Providence, NJ (2002). | MR | Zbl
A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, Philadelphia (2001). | MR | Zbl
Impulsive optimal control with finite or infinite time horizon. J. Optim. Theory Appl. 46 (1985) 431–439. | DOI | MR | Zbl
,On differential systems with vector-valued impulsive controls. Unione Matematica Italiana. Bollettino B. 2 (1988) 641–656. | MR | Zbl
and ,A.E. Bryson and Y.C. Ho, Applied optimal control theory. Ginn & Co., Waltham (1969).
M. Claeys, Mesures d’occupation et relaxations semi-définies pour la commande optimale. Ph.D. thesis (in French), University of Toulouse (2013).
M. Claeys and R.J. Sepulchre, Reconstructing trajectories from the moments of occupation measures. Proc. of the IEEE Conference on Decision and Control (2014).
Measures and LMIs for non-linear optimal impulsive control. IEEE Trans. Automat. Cont. 59 (2014) 1374–1379. | DOI | MR | Zbl
, , and ,Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987) 667–689. | DOI | MR | Zbl
and ,Hamilton−Jacobi inequalities in control problems for impulsive dynamical systems. Proc. of the Steklov Institute of Mathematics 271 (2010) 86–102. | DOI | MR | Zbl
and ,H.O. Fattorini, Infinite dimensional optimization and control theory. Cambridge University Press, UK (1999). | MR | Zbl
Oscillations and concentrations generated by -free mappings and weak lower semicontinuity of integral functionals. ESAIM: COCV 16 (2010) 472–502. | Numdam | MR | Zbl
and ,Linear programming approach to deterministic infinite horizon optimal control problems with discounting. SIAM J. Control Optim. 48 (2009) 2480–2512. | DOI | MR | Zbl
and ,R.V. Gamkrelidze, Principles of optimal control theory. Plenum Press, New York (1978). | MR | Zbl
Optimal control systems with state variable jump discontinuities. J. Optim. Theory Appl. 31 (1980) 195–205. | DOI | MR | Zbl
and ,Convex computation of the region of attraction of polynomial control systems. IEEE Trans. Automat. Contr. 59 (2014) 297–312. | DOI | MR | Zbl
and ,Gloptipoly 3: Moments, optimization and semidefinite programming. Optim. Methods Soft. 24 (2009) 761–779. | DOI | MR | Zbl
, and ,Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. | Numdam | MR | Zbl
and ,Sequential weak continuity of null Lagrangians at the boundary. Calc. Var. 49 (2014) 1263–1278. | DOI | MR | Zbl
, and ,The computation of martensitic microstructure with piecewise laminates. J. Sci. Comput. 19 (2003) 293–308. | DOI | MR | Zbl
and ,On the measures of DiPerna and Majda. Math. Bohemica 122 (1997) 383–399. | DOI | MR | Zbl
and ,Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim. 20 (1999) 511–530. | DOI | MR | Zbl
and ,J.-B. Lasserre, Positive polynomials and their applications. Imperial College Press, London, UK (2010). | MR | Zbl
J.B. Lasserre, C. Prieur and D. Henrion, Nonlinear optimal control: numerical approximation via moments and LMI relaxations. Proc. of IEEE Conf. Decision and Control and Europ. Control Conf. Sevilla, Spain (2005).
Nonlinear optimal control via occupation measures and LMI relaxations. SIAM J. Control Optim. 47 (2008) 1643–1666. | DOI | MR | Zbl
, , and ,An alternative approach for non-linear optimal control problems based on the method of moments. Comput. Optim. Appl. 38 (2007) 147–171. | DOI | MR | Zbl
, and ,Coarse-convex-compactification approach to numerical solution of nonconvex variational problems. Numer. Functional Anal. Optim. 31 (2010) 460–488. | DOI | MR | Zbl
, and ,B. Miller and E. Ya. Rubinovich, Impulsive control in continuous and discrete-continuous systems. Springer, Berlin (2003). | MR | Zbl
Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Diff. Integral Eqs. 8 (1995) 269–288. | MR | Zbl
and ,Optimization, a moment problem and nonlinear programming. SIAM J. Control 2 (1964) 33–53. | MR | Zbl
,T. Roubíček, Relaxation in optimization theory and variational calculus. W. de Gruyter, Berlin (1997). | MR | Zbl
T. Roubíček, M. Kružík Adaptive approximation algorithm for relaxed optimization problems In Proc. of Fast Solutions of Discrete Optimization Problems held in WIAS, Berlin, May (2000) 8–12, edited by V. Schulz, K.-H. Hoffmann and R.H.W. Hoppe. Birkhäser, Basel (2001). | MR | Zbl
H.L. Royden and P. Fitzpatrick, Real analysis, 4th edition. Prentice Hall, NJ (2010). | Zbl
Spaces of functions on domain , whose th derivatives are measures defined on . Časopis Pro Pěstování Mat. 97 (1972) 10–46. | DOI | MR | Zbl
,E.M. Stein and R. Shakarchi, Princeton lectures on analysis III. Real analysis: measure theory, integration, and Hilbert spaces. Princeton University Press, Princeton, NJ (2005). | MR | Zbl
Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12 (1999) 625–653. | DOI | MR | Zbl
.Convex duality and nonlinear optimal control. SIAM J. Control Optim. 31 (1993) 518–538. | DOI | MR | Zbl
,The equivalence of strong and weak formulations for certain problems in optimal control. SIAM J. Control Optim. 16 (1978) 546–570. | DOI | MR | Zbl
and ,L.C. Young, Lectures on the calculus of variations and optimal control theory. W.B. Saunders Co., Philadelphia, NJ (1969). | MR | Zbl
Cited by Sources: