The inverse problem in convex optimization with linear constraints
ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 1, pp. 71-94.

In this paper, we solve an inverse problem arising in convex optimization. We consider a maximization problem under m linear constraints. We characterize the solutions of this kind of problems. More precisely, we give necessary and sufficient conditions for a given function in R n to be the solution of a multi-constraint maximization problem. The conditions we give here extend well-known results in microeconomic theory.

Received:
Accepted:
DOI: 10.1051/cocv/2015040
Classification: 90C45, 49N45
Keywords: Inverse problem, multi-constraint maximization, value function, Slutsky relations
Aloqeili, Marwan 1

1 Department of Mathematics, Birzeit University, P.O. Box 14 Birzeit, Palestine.
@article{COCV_2017__23_1_71_0,
     author = {Aloqeili, Marwan},
     title = {The inverse problem in convex optimization with linear constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {71--94},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015040},
     mrnumber = {3601016},
     zbl = {1388.90095},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015040/}
}
TY  - JOUR
AU  - Aloqeili, Marwan
TI  - The inverse problem in convex optimization with linear constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 71
EP  - 94
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015040/
DO  - 10.1051/cocv/2015040
LA  - en
ID  - COCV_2017__23_1_71_0
ER  - 
%0 Journal Article
%A Aloqeili, Marwan
%T The inverse problem in convex optimization with linear constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 71-94
%V 23
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015040/
%R 10.1051/cocv/2015040
%G en
%F COCV_2017__23_1_71_0
Aloqeili, Marwan. The inverse problem in convex optimization with linear constraints. ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 1, pp. 71-94. doi : 10.1051/cocv/2015040. http://archive.numdam.org/articles/10.1051/cocv/2015040/

M. Aloqeili, Utilisation du calcul différentiel exteriur en théorie du consommateur. Ph.D thesis, Université Paris Dauphine (2000).

M. Aloqeili, Characterizing demand functions with price dependent income. Math. Fin. Econ. 8 (2014) 135–151. | DOI | MR | Zbl

M. Aloqeili, The Generalized Slutsky Relations. J. Math. Econ. 40/1-2 (2004) 71-91. | MR | Zbl

R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, and P. Griffiths, Exterior Differential Systems. In vol. 18. MSRI Publications. Springer-Verlag (1991). | MR | Zbl

P.A. Chiappori and I. Ekeland, The micro economics of group behavior: General characterization. J. Econ. Theory 130 1–26. | DOI | MR | Zbl

P.A. Chiappori and I. Ekeland, The Economics and Mathematics of Aggregation: Formal Models of Efficient Group Behavior. Now Publishers Inc. Hanover (2010). | Zbl

P.A. Chiappori and I. Ekeland, Exterior differential calculus and aggregation theory: a presentation and some new results. CEREMADE, Université Paris-Dauphine.

I. Ekeland and N. Djitté, An inverse problem in the economic theory of demand. Ann. Inst. Henri Poincaré, Non Lin. Anal. 23 (2016) 269–281. | DOI | Numdam | MR | Zbl

I. Ekeland and L. Nirenberg, A Convex Darboux Theorem. Methods Appl. Anal. 9 (2002) 329–344. | DOI | MR | Zbl

L.G. Epstein, Generalized duality and integrability. Econometrica 49 (1981) 655–678. | DOI | MR | Zbl

Cited by Sources: