Occupational measures and averaged shape optimization
ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 3, pp. 1141-1165.

We consider the minimization of averaged shape optimization problems over the class of sets of finite perimeter. We use occupational measures, which are probability measures defined in terms of the reduced boundary of sets of finite perimeter, that allow to transform the minimization into a linear problem on a set of measures. The averaged nature of the problem allows the optimal value to be approximated with sets with unbounded perimeter. In this case, we show that we can also approximate the optimal value with convex polytopes with n+1 faces shrinking to a point. We derive conditions under which we show the existence of minimizers and we also analyze the appropriate spaces in which to study the problem.

Received:
Accepted:
DOI: 10.1051/cocv/2017017
Classification: 49Q20, 49Q10, 28A33
Keywords: Shape optimization, occupational measures, sets of finite perimeter, Cheeger sets
Bright, Ido 1; Li, Qinfeng 1; Torres, Monica 1

1
@article{COCV_2018__24_3_1141_0,
     author = {Bright, Ido and Li, Qinfeng and Torres, Monica},
     title = {Occupational measures and averaged shape optimization},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1141--1165},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017017},
     zbl = {1405.49030},
     mrnumber = {3877196},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017017/}
}
TY  - JOUR
AU  - Bright, Ido
AU  - Li, Qinfeng
AU  - Torres, Monica
TI  - Occupational measures and averaged shape optimization
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1141
EP  - 1165
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017017/
DO  - 10.1051/cocv/2017017
LA  - en
ID  - COCV_2018__24_3_1141_0
ER  - 
%0 Journal Article
%A Bright, Ido
%A Li, Qinfeng
%A Torres, Monica
%T Occupational measures and averaged shape optimization
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1141-1165
%V 24
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017017/
%R 10.1051/cocv/2017017
%G en
%F COCV_2018__24_3_1141_0
Bright, Ido; Li, Qinfeng; Torres, Monica. Occupational measures and averaged shape optimization. ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 3, pp. 1141-1165. doi : 10.1051/cocv/2017017. http://archive.numdam.org/articles/10.1051/cocv/2017017/

[1] A.D. Alexandrov, Convex Polyhedra. Monographs in Mathematics. Translation ofthe 1950 Russian, edited by N.S. Dairbekov, S.S. Kutateladze and A.B. Sossinsky. Springer Verlag, Berlin (2005) | MR | Zbl

[2] F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body. Nonlin. Anal. 70 (2009) 32–44 | DOI | MR | Zbl

[3] F. Alter, V. Caselles and A. Chambolle, A characterization of Convex Calibrable Sets in ℝn. Math. Ann. 332 (2005) 329–366 | DOI | MR | Zbl

[4] L. Ambrosio, V. Caselles, S. Masnou and J.M. Morel, Connected components of sets of finite perimeter and applications to image processing. J. Europ. Math. Soc. 3 (2001) 39–92 | DOI | MR | Zbl

[5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press: New York (2000) | MR | Zbl

[6] Z. Artstein and I. Bright, Periodic optimization suffices for infinite horizon planar optimal control. SIAM J. Control Optim. 48 (2010) 4963–4986 | DOI | MR | Zbl

[7] I. Bright and J.M. Lee, A note on flux integrals over smooth regular domains. Pacific J. Math. 272 (2014) 305–322 | DOI | MR | Zbl

[8] I. Bright and M. Torres, The integral of the normal and fluxes over sets of finite perimeter. Interface Free Bound. 17 (2015) 245–259 | DOI | MR | Zbl

[9] P. Billingsley, Convergence of probability measures. Wiley Interscience (2009) | Zbl

[10] G. Buttazzo, G. Carlier and M. Comte, On the selection of maximal Cheeger sets. Differ. Integral Equ. 20 (2007) 991–1004. | MR | Zbl

[11] A. Chambolle, M. Goldman and M. Novaga, Fine properties of the subdifferential for a class of one-homogeneous functionals. (2012). | arXiv | Zbl

[12] V. Caselles, A. Chambolle and M. Novaga, Uniqueness of the Cheeger set of a convex body. Pacific J. Math. 231 (2007) 77–90 | DOI | MR | Zbl

[13] V. Caselles, A. Chambolle and M. Novaga, Some Remarks on uniqueness and regularity of Cheeger sets. Rend. Sem. Mat. Univ. Padova 123 (2010) | DOI | Numdam | MR | Zbl

[14] G. Carlier, M. Comte and G. Peyré, Approximation of maximal Cheeger sets by projection. Math. Model. Number Anal. 43 (2008) 139–150 | DOI | Numdam | MR | Zbl

[15] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis, Princeton Univ. Press. New Jersey (1970) 195–199. | MR | Zbl

[16] G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147 (1999) 89–118. | DOI | MR | Zbl

[17] G.-Q. Chen and M. Torres, Divergence-measure fields, sets of finite perimeter, and conservation laws. Arch. Rational Mech. Anal. 175 (2005) 245–267 | DOI | MR | Zbl

[18] G.-Q. Chen, M. Torres and W.P. Ziemer, Gauss–Green Theorem for Weakly Differentiable Vector Fields, Sets of Finite Perimeter, and Balance Laws. Commun. Pure Appl. Math. 62 (2009) 242–304 | DOI | MR | Zbl

[19] C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd edition. Springer Verlag: Berlin (2005) | DOI | MR | Zbl

[20] C. Evansand D. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL (1992). | MR | Zbl

[21] H. Federer, Geometric Measure Theory. Springer Verlag, New York Inc. (1969). | MR | Zbl

[22] A. Figalli, F. Maggi and A. Pratelli, A note on Cheeger sets. Proc. of Amer. Math. Soc. 137 (2009) 2057–2062 | DOI | MR | Zbl

[23] L. Finlay, V. Gaitsgory and I. Lebedev, Duality in linear programming problems related to deterministic long run average problems of optimal control. SIAM J. Control Optim. 47 (2008) 1667–1700 | DOI | MR | Zbl

[24] V. Gaitsgory and M. Quincampoix, Linear programming approach to deterministic infinite horizon optimal control problems with discounting. SIAM J. Control Optim. 48 (2009) 2480–2512 | DOI | MR | Zbl

[25] P. Gruber, Convex and discrete geometry. Springer, Berlin (2007) | MR | Zbl

[26] I.R. Ionescu and T. Lachand–Robert, Generalized Cheeger sets related to landslides. Calcul. Variat. Partial Differ. Equ. 23 (2005) 227–249 | DOI | MR | Zbl

[27] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems. Cambridge (2011) | MR | Zbl

[28] R.T. Rockafellar, Convex Analysis. Princeton, New Jersey, Princeton University Press (1970) | DOI | MR | Zbl

[29] M. Šilhavý The Mechanics and Thermodynamics of Continuous Media. Springer Verlag (1997) | DOI | MR | Zbl

[30] M. Šilhavý Divergence measure fields and Cauchy’s stress theorem. Rend. Sem. Mat. Univ. Padova 113 (2005) 15–45 | Numdam | MR | Zbl

[31] W.P. Ziemer, Weakly Differentiable Functions. In Vol. 120 of Graduate Texts in Mathematics. Springer Verlag: New York (1989) | DOI | MR | Zbl

Cited by Sources: