Anisotropic free-discontinuity functionals as the Γ-limit of second-order elliptic functionals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1107-1139.

We provide an approximation result for free-discontinuity functionals of the form ( u ) = Ω f ( x , u , u ) d x + s u Ω θ ( x , ν u ) d n - 1 , u S B V 2 ( Ω )

where f is quadratic in the gradient-variable and θ is an arbitrary smooth Finsler metric. The approximating functionals are of Ambrosio-Tortorelli type and depend on the Hessian of the edge variable through a suitable nonhomogeneous metric ϕ .

DOI : 10.1051/cocv/2017027
Classification : 49J45, 74G65, 68U10
Mots clés : Γ-convergence, Ambrosio-Tortorelli approximation, anisotropic free-discontinuity functionals, Finsler metrics
Bach, Annika 1

1
@article{COCV_2018__24_3_1107_0,
     author = {Bach, Annika},
     title = {Anisotropic free-discontinuity functionals as the {\ensuremath{\Gamma}-limit} of second-order elliptic functionals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1107--1139},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017027},
     zbl = {1412.49032},
     mrnumber = {3877195},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017027/}
}
TY  - JOUR
AU  - Bach, Annika
TI  - Anisotropic free-discontinuity functionals as the Γ-limit of second-order elliptic functionals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1107
EP  - 1139
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017027/
DO  - 10.1051/cocv/2017027
LA  - en
ID  - COCV_2018__24_3_1107_0
ER  - 
%0 Journal Article
%A Bach, Annika
%T Anisotropic free-discontinuity functionals as the Γ-limit of second-order elliptic functionals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1107-1139
%V 24
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017027/
%R 10.1051/cocv/2017027
%G en
%F COCV_2018__24_3_1107_0
Bach, Annika. Anisotropic free-discontinuity functionals as the Γ-limit of second-order elliptic functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1107-1139. doi : 10.1051/cocv/2017027. http://archive.numdam.org/articles/10.1051/cocv/2017027/

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975) | MR | Zbl

[2] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. 3 (1989a) 857–881 | MR | Zbl

[3] L. Ambrosio, Variational problems in SBV and image segmentation. Acta Appl. Math. 17 (1989b) 1–40 | DOI | MR | Zbl

[4] L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291–322 | DOI | MR | Zbl

[5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Clarendon Press, New York (2000) | DOI | MR | Zbl

[6] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036 | DOI | MR | Zbl

[7] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. 6 (1992) 105–123 | MR | Zbl

[8] M. Baía, A.C. Barroso, M. Chermisi and J. Matias, Coupled second order singular perturbations for phase transitions. Nonlinearity 26 (2013) 1271–1311 | DOI | MR | Zbl

[9] G. Bellettini and I. Fragalà, Elliptic approximations of prescribed mean curvature surfaces in Finsler geometry. Asymptotic Anal. 22 (2000) 87–111 | MR | Zbl

[10] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25 (1996) 537–566 | DOI | MR | Zbl

[11] G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in calculus of variations. Ann. Mat. Pura Appl. 170 (1996) 329–359 | DOI | MR | Zbl

[12] G. Bouchitté, I. Fonseca, G. Leoni and L. Mascarenhas, A global method for relaxation in W1,p and in SBV p. Arch. Ration. Mech. Anal. 165 (2002) 187–242 | DOI | MR | Zbl

[13] A. Braides, Approximation of Free-discontinuity Problems. Lecture Notes in Mathematics. Springer Verlag, Berlin (1998) | DOI | MR | Zbl

[14] A. Braides, Γ-convergence for Beginners. Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002) | MR | Zbl

[15] M. Burger, T. Esposito and C.I. Zeppieri, Second-Order Edge-Penalization in the Ambrosio-TortorelliFunctional. SIAM Multiscale Model. Simul. 13 (2015) 1354–1389 | DOI | MR | Zbl

[16] M. Chermisi, G. Dal Maso, I. Fonseca and G. Leoni, Singular perturbation models in phase transitions for second-order materials. Indiana Univ. Math. J. 60 (2011) 591–639 | DOI | MR | Zbl

[17] M. Cicalese, E.N. Spadaro and C.I. Zeppieri, Asymptotic analysis of a second-order singular perturbation model for phase transitions Calc. Var. 41 (2011) 127–150 | DOI | MR | Zbl

[18] G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38 (1999) 585–604 | DOI | MR | Zbl

[19] T. Esposito, Second-order approximation of free-discontinuity problems with linear growth. available online from http://cvgmt.sns.it/media/doc/paper/3162/E2016.pdf. | MR

[20] M. Focardi, On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods App. Sci. 11 (2001) 663–684 | DOI | MR | Zbl

[21] I. Fonseca and C. Mantegazza, Second order singular perturbation models for phase transitions. SIAM J. Math. Anal. 31 (2000) 1121–1143 | DOI | MR | Zbl

[22] I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098 | DOI | MR | Zbl

[23] E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199–210 | Zbl

[24] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991) | DOI | MR

[25] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999) 653–710 | DOI | MR | Zbl

[26] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987) 123–142 | DOI | MR | Zbl

[27] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Bol. Unione. Mat. Ital. 14 (1977) 285–299 | MR | Zbl

[28] D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577–685 | DOI | MR | Zbl

[29] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. Princeton University Press, New Jersey (1970) | MR | Zbl

[30] D. Vicente, Mumford-Shah model for detection of thin structures in an image. Theses, Université d’Orléans, September 2015. URL https://hal.archives-ouvertes.fr/tel-01231219

Cité par Sources :