Prox-regularity approach to generalized equations and image projection
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 677-708.

In this paper, we first investigate the prox-regularity behaviour of solution mappings to generalized equations. This study is realized through a nonconvex uniform Robinson−Ursescu type theorem. Then, we derive new significant results for the preservation of prox-regularity under various and usual set operations. The role and applications of prox-regularity of solution sets of generalized equations are illustrated with dynamical systems with constraints.

DOI : 10.1051/cocv/2017052
Classification : 49J52, 49J53, 47J22, 65K10, 90C33
Mots-clés : Variational analysis, prox-regular set, metric regularity, generalized equation, Robinson−Ursescu Theorem, variational inclusion, nonsmooth dynamics
Adly, Samir 1 ; Nacry, Florent 1 ; Thibault, Lionel 1

1
@article{COCV_2018__24_2_677_0,
     author = {Adly, Samir and Nacry, Florent and Thibault, Lionel},
     title = {Prox-regularity approach to generalized equations and image projection},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {677--708},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017052},
     mrnumber = {3816410},
     zbl = {1409.49014},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017052/}
}
TY  - JOUR
AU  - Adly, Samir
AU  - Nacry, Florent
AU  - Thibault, Lionel
TI  - Prox-regularity approach to generalized equations and image projection
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 677
EP  - 708
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017052/
DO  - 10.1051/cocv/2017052
LA  - en
ID  - COCV_2018__24_2_677_0
ER  - 
%0 Journal Article
%A Adly, Samir
%A Nacry, Florent
%A Thibault, Lionel
%T Prox-regularity approach to generalized equations and image projection
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 677-708
%V 24
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017052/
%R 10.1051/cocv/2017052
%G en
%F COCV_2018__24_2_677_0
Adly, Samir; Nacry, Florent; Thibault, Lionel. Prox-regularity approach to generalized equations and image projection. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 677-708. doi : 10.1051/cocv/2017052. http://archive.numdam.org/articles/10.1051/cocv/2017052/

[1] S. Adly, F. Nacry and L. Thibault, Discontinuous sweeping process with prox-regular sets. ESAIM: COCV 23 (2017) 1293–1329. | Numdam | MR | Zbl

[2] S. Adly, F. Nacry and L. Thibault, Preservation of prox-regularity of sets with applications to constrained optimization. SIAM J. Optim. 26 (2016) 448–473. | DOI | MR | Zbl

[3] J.-P. Aubin and A. Cellina, Differential inclusions. Set-valued maps and viability theory. Grundlehren der Mathematischen Wissenschaften. Springer Verlag, Berlin 264 (1984). | MR | Zbl

[4] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser Boston, Inc., Boston, MA (2009). | DOI | MR | Zbl

[5] D. Aussel, A. Daniilidis and L. Thibault, Subsmooth sets: functional characterizations and related concepts. Trans. Amer. Math. Soc. 357 (2005) 1275–1301. | DOI | MR | Zbl

[6] F. Bernard, L. Thibault and N. Zlateva, Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties. Trans. Amer. Math. Soc. 363 (2011) 2211–2247. | DOI | MR | Zbl

[7] M. Bounkhel and D. Bounkhel, Inégalités variationnelles non convexes. ESAIM: COCV 11 (2005) 574–594. | Numdam | MR | Zbl

[8] H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968) 115–175. | DOI | Numdam | MR | Zbl

[9] P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Birkhäuser (2004). | DOI | MR | Zbl

[10] F. Chazal, D. Cohen–Steiner and Q. Mérigot, Boundary measures for geometric inference. Found. Comput. Math. Vol. 10 (2010) 221–240. | DOI | MR | Zbl

[11] F.H. Clarke, Optimization and Nonsmooth Analysis, 2nd Edition. Classics in Applied Mathematics. Soc. Industrial Appl. Math. (SIAM), Philadelphia, PA 5 (1990). | MR | Zbl

[12] G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of nonconvex analysis and applications. Int. Press Somerville, MA (2010) 99–182. | MR | Zbl

[13] A.L. Dontchev and R.T. Rockafellar, Implicit Functions and Solution Mappings. A view from variational analysis, 2nd edition. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014). | DOI | MR

[14] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Grundlehren der Mathematischen Wissenschaften. Springer Verlag, Berlin, New York 219 (1976). | DOI | MR | Zbl

[15] H. Federer, Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418–491. | DOI | MR | Zbl

[16] H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften. Band 153 (1969) xiv+676. | MR | Zbl

[17] H. Huang and R.X. Li, Global error bounds for γ-paraconvex multifunctions. Set-Valued Var. Anal. 19 (2011) 487–504. | DOI | MR | Zbl

[18] A. Jourani, Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications. Studia Math. 117 (1996) 123–136. | DOI | MR | Zbl

[19] A. Jourani and E. Vilches, Positively α-far sets and existence results for generalized perturbed sweeping processes. J. Convex Anal. 23 (2016) 775–821. | MR | Zbl

[20] J. Lindenstrauss and Y. Benyamini, Geometric nonlinear functional analysis, Vol. 1, American Mathematical Society Colloquium Publications. Amer. Math. Soc. Providence, RI 48 (2000) | MR | Zbl

[21] J.-L. Lions and G. Stampacchia, Variational inequalities. Commun. Pure Appl. Math. 20 (1967) 493–519. | DOI | MR | Zbl

[22] D.R. Luke, Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space. SIAM J. Optim. 19 (2008) 714–739. | DOI | MR | Zbl

[23] S. Marcellin and L. Thibault, Evolution problems associated with primal lower nice functions. J. Convex Anal. 13 (2006) 385–421. | MR | Zbl

[24] B. Maury and J. Venel, A discrete contact model for crowd motion. ESAIM: M2AN 45 (2011) 145–168. | DOI | Numdam | MR | Zbl

[25] B. Maury, Nonsmooth evolution models in crowd dynamics: mathematical and numerical issues Collective dynamics from bacteria to crowds. CISM Courses Lect. 553 (2014) 47–73. | MR

[26] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I. Grundlehren Series Vol. 330, Springer (2006). | MR | Zbl

[27] J.-J. Moreau, Rafle par un convexe variable I. Travaux Sém. Anal. Convexe Montpellier (1971), Exposé 15. | MR | Zbl

[28] U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510–585. | DOI | MR | Zbl

[29] J. Noel, Inclusions différentielles d’évolution associées à des ensembles sous-lisses. Thèse dedoctorat (2013) Université Montpellier 2.

[30] R.A. Poliquin, Integration of subdifferentials of nonconvex functions. Nonl. Anal. 17 (1991) 385–398. | DOI | MR | Zbl

[31] R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000) 5231–5249. | DOI | MR | Zbl

[32] S.M. Robinson, Generalized equations and their solutions, Part I: Basic theory. Math. Programming Stud. (1979) 128–141. | DOI | MR | Zbl

[33] S.M. Robinson, Generalized equations and their solutions, Part II: Applications to nonlinear programming. Math. Programming Stud. (1982) 200–221. | DOI | MR | Zbl

[34] S.M. Robinson, Generalized equations. Mathematical programming: the state of the art. Bonn (1982) Springer, Berlin 1983 346–367. | MR | Zbl

[35] S.M. Robinson, Regularity and stability for convex multivalued functions. Math. Oper. Res. 1 (1976) 130–143. | DOI | MR | Zbl

[36] R.T. Rockafellar and R.J-B. Wets, Variational Analysis. Grundlehren der Mathematischen Wissenschaften. Springer, New York 317 (1998). | DOI | MR | Zbl

[37] S. Rolewicz, On paraconvex multifunctions. Oper. Res. Verfahren 31 (1979) 539–546. | MR | Zbl

[38] O.-S. Serea, On reflecting boundary problem for optimal control. SIAM J. Control Optim. 42 (2003) 559–575. | DOI | MR | Zbl

[39] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258 (1964) 4413–4416. | MR | Zbl

[40] C. Thäle, 50 years sets with positive reach: a survey. Surv. Math. Appl. 3 (2008) 123–165. | MR | Zbl

[41] C. Ursescu, Multifunctions with convex closed graphs. Czechoslovak Math. J. 25 (1975) 438–441. | DOI | MR | Zbl

[42] J. Venel, A numerical scheme for a class of sweeping processes. Numer. Math. 118 (2011) 367–400. | DOI | MR | Zbl

[43] J.-P. Vial, Strong and weak convexity of sets and functions. Math. Oper. Res. 8 (1983) 231–259. | DOI | MR | Zbl

[44] X.Y. Zheng and Q.H. He, Characterization for metric regularity for σ-subsmooth multifunctions. Nonl. Anal. 100 (2014) 111–121. | DOI | MR | Zbl

[45] X.Y. Zheng and K.F. Ng, Calmness for L-subsmooth multifunctions in Banach spaces. Siam J. Optim. 19 (2008) 1648–1673. | DOI | MR | Zbl

[46] X.Y. Zheng and K.F. Ng, Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. Siam J. Optim. 20 (2010) 2119–2136. | DOI | MR | Zbl

[47] X.Y. Zheng and K.F. Ng, Metric Subregularity for proximal generalized equations in Hilbert spaces. Nonl. Anal. 75 (2012) 1686–1699. | DOI | MR | Zbl

Cité par Sources :