In this paper, we first investigate the prox-regularity behaviour of solution mappings to generalized equations. This study is realized through a nonconvex uniform Robinson−Ursescu type theorem. Then, we derive new significant results for the preservation of prox-regularity under various and usual set operations. The role and applications of prox-regularity of solution sets of generalized equations are illustrated with dynamical systems with constraints.
Mots-clés : Variational analysis, prox-regular set, metric regularity, generalized equation, Robinson−Ursescu Theorem, variational inclusion, nonsmooth dynamics
@article{COCV_2018__24_2_677_0, author = {Adly, Samir and Nacry, Florent and Thibault, Lionel}, title = {Prox-regularity approach to generalized equations and image projection}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {677--708}, publisher = {EDP-Sciences}, volume = {24}, number = {2}, year = {2018}, doi = {10.1051/cocv/2017052}, mrnumber = {3816410}, zbl = {1409.49014}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2017052/} }
TY - JOUR AU - Adly, Samir AU - Nacry, Florent AU - Thibault, Lionel TI - Prox-regularity approach to generalized equations and image projection JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 677 EP - 708 VL - 24 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2017052/ DO - 10.1051/cocv/2017052 LA - en ID - COCV_2018__24_2_677_0 ER -
%0 Journal Article %A Adly, Samir %A Nacry, Florent %A Thibault, Lionel %T Prox-regularity approach to generalized equations and image projection %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 677-708 %V 24 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2017052/ %R 10.1051/cocv/2017052 %G en %F COCV_2018__24_2_677_0
Adly, Samir; Nacry, Florent; Thibault, Lionel. Prox-regularity approach to generalized equations and image projection. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 677-708. doi : 10.1051/cocv/2017052. http://archive.numdam.org/articles/10.1051/cocv/2017052/
[1] Discontinuous sweeping process with prox-regular sets. ESAIM: COCV 23 (2017) 1293–1329. | Numdam | MR | Zbl
, and ,[2] Preservation of prox-regularity of sets with applications to constrained optimization. SIAM J. Optim. 26 (2016) 448–473. | DOI | MR | Zbl
, and ,[3] Differential inclusions. Set-valued maps and viability theory. Grundlehren der Mathematischen Wissenschaften. Springer Verlag, Berlin 264 (1984). | MR | Zbl
and ,[4] Set-Valued Analysis, Birkhäuser Boston, Inc., Boston, MA (2009). | DOI | MR | Zbl
and ,[5] Subsmooth sets: functional characterizations and related concepts. Trans. Amer. Math. Soc. 357 (2005) 1275–1301. | DOI | MR | Zbl
, and ,[6] Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties. Trans. Amer. Math. Soc. 363 (2011) 2211–2247. | DOI | MR | Zbl
, and ,[7] Inégalités variationnelles non convexes. ESAIM: COCV 11 (2005) 574–594. | Numdam | MR | Zbl
and ,[8] Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968) 115–175. | DOI | Numdam | MR | Zbl
,[9] Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Birkhäuser (2004). | DOI | MR | Zbl
and ,[10] Boundary measures for geometric inference. Found. Comput. Math. Vol. 10 (2010) 221–240. | DOI | MR | Zbl
, and ,[11] Optimization and Nonsmooth Analysis, 2nd Edition. Classics in Applied Mathematics. Soc. Industrial Appl. Math. (SIAM), Philadelphia, PA 5 (1990). | MR | Zbl
,[12] Prox-regular sets and applications, Handbook of nonconvex analysis and applications. Int. Press Somerville, MA (2010) 99–182. | MR | Zbl
and ,[13] Implicit Functions and Solution Mappings. A view from variational analysis, 2nd edition. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014). | DOI | MR
and ,[14] Inequalities in mechanics and physics. Grundlehren der Mathematischen Wissenschaften. Springer Verlag, Berlin, New York 219 (1976). | DOI | MR | Zbl
and ,[15] Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418–491. | DOI | MR | Zbl
,[16] Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften. Band 153 (1969) xiv+676. | MR | Zbl
,[17] Global error bounds for γ-paraconvex multifunctions. Set-Valued Var. Anal. 19 (2011) 487–504. | DOI | MR | Zbl
and ,[18] Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications. Studia Math. 117 (1996) 123–136. | DOI | MR | Zbl
,[19] Positively α-far sets and existence results for generalized perturbed sweeping processes. J. Convex Anal. 23 (2016) 775–821. | MR | Zbl
and ,[20] Geometric nonlinear functional analysis, Vol. 1, American Mathematical Society Colloquium Publications. Amer. Math. Soc. Providence, RI 48 (2000) | MR | Zbl
and ,[21] Variational inequalities. Commun. Pure Appl. Math. 20 (1967) 493–519. | DOI | MR | Zbl
and ,[22] Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space. SIAM J. Optim. 19 (2008) 714–739. | DOI | MR | Zbl
,[23] Evolution problems associated with primal lower nice functions. J. Convex Anal. 13 (2006) 385–421. | MR | Zbl
and ,[24] A discrete contact model for crowd motion. ESAIM: M2AN 45 (2011) 145–168. | DOI | Numdam | MR | Zbl
and ,[25] Nonsmooth evolution models in crowd dynamics: mathematical and numerical issues Collective dynamics from bacteria to crowds. CISM Courses Lect. 553 (2014) 47–73. | MR
,[26] Variational Analysis and Generalized Differentiation I. Grundlehren Series Vol. 330, Springer (2006). | MR | Zbl
,[27] Rafle par un convexe variable I. Travaux Sém. Anal. Convexe Montpellier (1971), Exposé 15. | MR | Zbl
,[28] Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510–585. | DOI | MR | Zbl
,[29] Inclusions différentielles d’évolution associées à des ensembles sous-lisses. Thèse dedoctorat (2013) Université Montpellier 2.
,[30] Integration of subdifferentials of nonconvex functions. Nonl. Anal. 17 (1991) 385–398. | DOI | MR | Zbl
,[31] Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000) 5231–5249. | DOI | MR | Zbl
, and ,[32] Generalized equations and their solutions, Part I: Basic theory. Math. Programming Stud. (1979) 128–141. | DOI | MR | Zbl
,[33] Generalized equations and their solutions, Part II: Applications to nonlinear programming. Math. Programming Stud. (1982) 200–221. | DOI | MR | Zbl
,[34] Generalized equations. Mathematical programming: the state of the art. Bonn (1982) Springer, Berlin 1983 346–367. | MR | Zbl
,[35] Regularity and stability for convex multivalued functions. Math. Oper. Res. 1 (1976) 130–143. | DOI | MR | Zbl
,[36] Variational Analysis. Grundlehren der Mathematischen Wissenschaften. Springer, New York 317 (1998). | DOI | MR | Zbl
and ,[37] On paraconvex multifunctions. Oper. Res. Verfahren 31 (1979) 539–546. | MR | Zbl
,[38] On reflecting boundary problem for optimal control. SIAM J. Control Optim. 42 (2003) 559–575. | DOI | MR | Zbl
,[39] Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258 (1964) 4413–4416. | MR | Zbl
,[40] 50 years sets with positive reach: a survey. Surv. Math. Appl. 3 (2008) 123–165. | MR | Zbl
,[41] Multifunctions with convex closed graphs. Czechoslovak Math. J. 25 (1975) 438–441. | DOI | MR | Zbl
,[42] A numerical scheme for a class of sweeping processes. Numer. Math. 118 (2011) 367–400. | DOI | MR | Zbl
,[43] Strong and weak convexity of sets and functions. Math. Oper. Res. 8 (1983) 231–259. | DOI | MR | Zbl
,[44] Characterization for metric regularity for σ-subsmooth multifunctions. Nonl. Anal. 100 (2014) 111–121. | DOI | MR | Zbl
and ,[45] Calmness for L-subsmooth multifunctions in Banach spaces. Siam J. Optim. 19 (2008) 1648–1673. | DOI | MR | Zbl
and ,[46] Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. Siam J. Optim. 20 (2010) 2119–2136. | DOI | MR | Zbl
and ,[47] Metric Subregularity for proximal generalized equations in Hilbert spaces. Nonl. Anal. 75 (2012) 1686–1699. | DOI | MR | Zbl
and ,Cité par Sources :