Analysis of control problems of nonmontone semilinear elliptic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 80.

In this paper we study optimal control problems governed by a semilinear elliptic equation. The equation is nonmonotone due to the presence of a convection term, despite the monotonocity of the nonlinear term. The resulting operator is neither monotone nor coervive. However, by using conveniently a comparison principle we prove existence and uniqueness of solution for the state equation. In addition, we prove some regularity of the solution and differentiability of the relation control-to-state. This allows us to derive first and second order conditions for local optimality.

DOI : 10.1051/cocv/2020032
Classification : 35J61, 49J20, 49K20
Mots-clés : Optimal control, semilinear partial differential equation, optimality conditions
@article{COCV_2020__26_1_A80_0,
     author = {Casas, Eduardo and Mateos, Mariano and R\"osch, Arnd},
     title = {Analysis of control problems of nonmontone semilinear elliptic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020032},
     mrnumber = {4162938},
     zbl = {1460.35150},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2020032/}
}
TY  - JOUR
AU  - Casas, Eduardo
AU  - Mateos, Mariano
AU  - Rösch, Arnd
TI  - Analysis of control problems of nonmontone semilinear elliptic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2020032/
DO  - 10.1051/cocv/2020032
LA  - en
ID  - COCV_2020__26_1_A80_0
ER  - 
%0 Journal Article
%A Casas, Eduardo
%A Mateos, Mariano
%A Rösch, Arnd
%T Analysis of control problems of nonmontone semilinear elliptic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2020032/
%R 10.1051/cocv/2020032
%G en
%F COCV_2020__26_1_A80_0
Casas, Eduardo; Mateos, Mariano; Rösch, Arnd. Analysis of control problems of nonmontone semilinear elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 80. doi : 10.1051/cocv/2020032. http://archive.numdam.org/articles/10.1051/cocv/2020032/

[1] H.T. Banks and K. Kunisch, Estimation techniques for distributed parameter systems, volume 1 of Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1989). | MR | Zbl

[2] T. Bayen and F. Silva, Second order analysis for strong solutions in the optimal control of parabolic equations. SIAM J. Control Optim. 54 (2016) 819–844. | DOI | MR | Zbl

[3] T. Bayen, F. Bonnans and F. Silva, Characterization of local quadratic growth for strong minima in the optimal control of semi-linear elliptic equations. Trans. Amer. Math. Soc. 366 (2014) 2063–2087. | DOI | MR | Zbl

[4] L. Boccardo, Stampacchia-Caldéron-Zygmund theory for linear elliptic equations with discontinuous coefficients and singular drift. ESAIM: COCV 25 (2019) 47. | Numdam | MR | Zbl

[5] L. Boccardo, Two semilinear Dirichlet problems “almost” in duality. Boll. Unione Mat. It. 12 (2019) 349–356. | DOI | MR | Zbl

[6] E. Casas and M. Mateos, Optimal control of partial differential equations, in Computational mathematics, numerical analysis and applications, Vol. 13 of SEMA SIMAI Springer Series. Springer, Cham (2017) 3–59. | DOI | MR | Zbl

[7] E. Casas and M. Mateos, Critical cones for sufficient second order conditions in PDE constrained optimization. SIAM J. Optim. 30 (2020) 585–603. | DOI | MR | Zbl

[8] E. Casas and F. Tröltzsch, Optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48 (2009) 688–718. | DOI | MR | Zbl

[9] E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: Improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279. | DOI | MR | Zbl

[10] E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber Dtsch Math-Ver 117 (2015) 3–44. | DOI | MR | Zbl

[11] E. Casas and F. Tröltzsch, State-constrained semilinear elliptic optimization problems with unrestricted sparse controls. Math. Control Relat. Fields 10 (2020) 527–546. | DOI | MR | Zbl

[12] L.C. Evans, Partial differential equations, Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998). | MR | Zbl

[13] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1983). | MR | Zbl

[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR | Zbl

[15] M. Křížek and L. Liu, On the maximum and comparison principles for a steady-state nonlinear heat condution problem. Z. Angew. Math. Mech. 83 (2003) 559–563. | DOI | MR | Zbl

[16] O.A. Ladyzhenskaya and N.N. Ural’Tseva, Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968). | MR | Zbl

[17] J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Editeurs Academia, Belgium (1967). | MR | Zbl

[18] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. | DOI | Numdam | MR | Zbl

[19] N.S. Trudinger, Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973) 265–308. | Numdam | MR | Zbl

Cité par Sources :

The first two authors were partially supported by Spanish Ministerio de Economía y Competitividad under research project MTM2017-83185-P.