We consider a class of semilinear elliptic equations of the form
Mots-clés : heteroclinic solutions, elliptic equations, variational methods
@article{COCV_2005__11_4_633_0, author = {Alessio, Francesca and Montecchiari, Piero}, title = {Entire solutions in $\mathbb {R}^{2}$ for a class of {Allen-Cahn} equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {633--672}, publisher = {EDP-Sciences}, volume = {11}, number = {4}, year = {2005}, doi = {10.1051/cocv:2005023}, mrnumber = {2167878}, zbl = {1084.35020}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2005023/} }
TY - JOUR AU - Alessio, Francesca AU - Montecchiari, Piero TI - Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 633 EP - 672 VL - 11 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2005023/ DO - 10.1051/cocv:2005023 LA - en ID - COCV_2005__11_4_633_0 ER -
%0 Journal Article %A Alessio, Francesca %A Montecchiari, Piero %T Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 633-672 %V 11 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2005023/ %R 10.1051/cocv:2005023 %G en %F COCV_2005__11_4_633_0
Alessio, Francesca; Montecchiari, Piero. Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 633-672. doi : 10.1051/cocv:2005023. http://archive.numdam.org/articles/10.1051/cocv:2005023/
[1] Stationary layered solutions in for an Allen-Cahn system with multiple well potential. Calc. Var. 5 (1997) 359-390. | Zbl
, and ,[2] On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65 (2001) 9-33. | Zbl
, and ,[3] Stationary layered solutions in for a class of non autonomous Allen-Cahn equations. Calc. Var. Partial Differ. Equ. 11 (2000) 177-202. | Zbl
, and ,[4] Existence of infinitely many stationary layered solutions in for a class of periodic Allen Cahn Equations. Commun. Partial Differ. Equ. 27 (2002) 1537-1574. | Zbl
, and ,[5] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi. J. Am. Math. Soc. 13 (2000) 725-739. | Zbl
and ,[6] On minimal laminations on the torus. Ann. Inst. H. Poincaré Anal. Nonlinéaire 6 (1989) 95-138. | Numdam | Zbl
,[7] The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math. 53 (2000) 1007-1038. | Zbl
, and ,[8] One-dimensional symmetry for some bounded entire solutions of some elliptic equations. Duke Math. J. 103 (2000) 375-396. | Zbl
, and ,[9] Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis. Rome, E. De Giorgi et al. Eds. (1978). | Zbl
,[10] Symmetry for solutions of semilinear elliptic equations in and related conjectures. Ricerche Mat. (in memory of Ennio De Giorgi) 48 (1999) 129-154. | Zbl
,[11] On a conjecture of De Giorgi and some related problems. Math. Ann. 311 (1998) 481-491. | Zbl
and ,[12] Minimal solutions of variational problem on a torus. Ann. Inst. H. Poincaré Anal. NonLinéaire 3 (1986) 229-272. | Numdam | Zbl
,[13] Mixed states for an Allen-Cahn type equation. Commun. Pure Appl. Math. 56 (2003) 1078-1134.
and ,[14] Mixed states for an Allen-Cahn type equation, II. Calc. Var. Partial Differ. Equ. 21 (2004) 157-207.
and ,[15] Heteroclinic for reversible Hamiltonian system. Ergod. Th. Dyn. Sys. 14 (1994) 817-829. | Zbl
,[16] Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations. J. Math. Sci. Univ. Tokio 1 (1994) 525-550. | Zbl
,Cité par Sources :