In this work we study the structure of approximate solutions of autonomous variational problems with a lower semicontinuous strictly convex integrand : , where is the -dimensional euclidean space. We obtain a full description of the structure of the approximate solutions which is independent of the length of the interval, for all sufficiently large intervals.
Mots-clés : good function, infinite horizon, integrand, overtaking optimal function, turnpike property
@article{COCV_2009__15_4_872_0, author = {Zaslavski, Alexander J.}, title = {Structure of approximate solutions of variational problems with extended-valued convex integrands}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {872--894}, publisher = {EDP-Sciences}, volume = {15}, number = {4}, year = {2009}, doi = {10.1051/cocv:2008053}, mrnumber = {2567250}, zbl = {1175.49002}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2008053/} }
TY - JOUR AU - Zaslavski, Alexander J. TI - Structure of approximate solutions of variational problems with extended-valued convex integrands JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 872 EP - 894 VL - 15 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2008053/ DO - 10.1051/cocv:2008053 LA - en ID - COCV_2009__15_4_872_0 ER -
%0 Journal Article %A Zaslavski, Alexander J. %T Structure of approximate solutions of variational problems with extended-valued convex integrands %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 872-894 %V 15 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2008053/ %R 10.1051/cocv:2008053 %G en %F COCV_2009__15_4_872_0
Zaslavski, Alexander J. Structure of approximate solutions of variational problems with extended-valued convex integrands. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 872-894. doi : 10.1051/cocv:2008053. http://archive.numdam.org/articles/10.1051/cocv:2008053/
[1] Neoclassical growth and the efficient program of capital accumulation. Rev. Econ. Studies 32 (1965) 127-136.
,[2] Optimization - theory and applications. Springer-Verlag, New York (1983). | MR | Zbl
,[3] On optimal development in a multi-sector economy. Rev. Econ. Studies 34 (1967) 1-18.
,[4] On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31-46. | MR | Zbl
and ,[5] Infinite horizon autonomous systems with unbounded cost. Appl. Math. Opt. 13 (1985) 19-43. | MR | Zbl
,[6] One dimensional infinite horizon variational problems arising in continuum mechanics. Arch. Rational Mech. Anal. 106 (1989) 161-194. | MR | Zbl
and ,[7] The structure of extremals of a class of second order variational problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 593-629. | Numdam | MR | Zbl
and ,[8] Classical general equilibrium theory. The MIT press, Cambridge, Massachusetts, USA (2002). | MR | Zbl
[9] Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 229-272. | Numdam | MR | Zbl
,[10] On some results of Moser and of Bangert. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 673-688. | Numdam | MR | Zbl
and ,[11] On some results of Moser and of Bangert. II. Adv. Nonlinear Stud. 4 (2004) 377-396. | MR
and ,[12] Convex analysis. Princeton University Press, Princeton, USA (1970). | MR | Zbl
,[13] A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 55 (1965) 486-496.
,[14] Existence of optimal programs of accumulation for an infinite horizon. Rev. Econ. Studies 32 (1965) 85-104.
,[15] Optimal programs on infinite horizon 1. SIAM J. Contr. Opt. 33 (1995) 1643-1660. | MR | Zbl
,[16] Optimal programs on infinite horizon 2. SIAM J. Contr. Opt. 33 (1995) 1661-1686. | MR | Zbl
,[17] Turnpike properties in the calculus of variations and optimal control. Springer, New York (2006). | MR | Zbl
,[18] Structure of extremals of autonomous convex variational problems. Nonlinear Anal. Real World Appl. 8 (2007) 1186-1207. | MR
,[19] A turnpike result for a class of problems of the calculus of variations with extended-valued integrands. J. Convex Analysis (to appear). | Zbl
,Cité par Sources :