The (-β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (-β)-integers by a fixed point of an anti-morphism.
@article{ITA_2012__46_1_181_0, author = {Steiner, Wolfgang}, title = {On the structure of $(-\varepsilon )$-integers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {181--200}, publisher = {EDP-Sciences}, volume = {46}, number = {1}, year = {2012}, doi = {10.1051/ita/2011115}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2011115/} }
TY - JOUR AU - Steiner, Wolfgang TI - On the structure of $(-\varepsilon )$-integers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 181 EP - 200 VL - 46 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2011115/ DO - 10.1051/ita/2011115 LA - en ID - ITA_2012__46_1_181_0 ER -
%0 Journal Article %A Steiner, Wolfgang %T On the structure of $(-\varepsilon )$-integers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 181-200 %V 46 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2011115/ %R 10.1051/ita/2011115 %G en %F ITA_2012__46_1_181_0
Steiner, Wolfgang. On the structure of $(-\varepsilon )$-integers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 181-200. doi : 10.1051/ita/2011115. http://archive.numdam.org/articles/10.1051/ita/2011115/
[1] Numbers with integer expansion in the numeration system with negative base. arXiv:0912.4597v3 [math.NT]. | MR | Zbl
, , and ,[2] Asymptotic behavior of beta-integers. Lett. Math. Phys. 84 (2008) 179-198. | MR | Zbl
, and ,[3] Sequences with constant number of return words. Monatsh. Math. 155 (2008) 251-263. | MR | Zbl
, and ,[4] On a class of infinite words with affine factor complexity. Theoret. Comput. Sci. 389 (2007) 12-25. | MR | Zbl
, and ,[5] Tilings associated with beta-numeration and substitutions. Integers 5 (2005) 46 (electronic only). | MR | Zbl
and ,[6] Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31 (1998) 6449-6472. | MR | Zbl
, , and ,[7] A characterization of substitutive sequences using return words. Discrete Math. 179 (1998) 89-101. | MR | Zbl
,[8] AH-substitution and Markov partition of a group automorphism on Td. Tokyo J. Math. 31 (2008) 375-398. | MR | Zbl
,[9] Substitutions et β-systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | MR | Zbl
,[10] On negative bases, Proceedings of DLT 09. Lect. Notes Comput. Sci. 5583 (2009) 252-263. | MR | Zbl
and ,[11] Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl. 38 (2004) 163-185; Corrigendum: RAIRO-Theor. Inf. Appl. 38 (2004) 269-271. | Numdam | MR | Zbl
, and ,[12] Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux 16 (2004) 125-149. | Numdam | MR | Zbl
and ,[13] Invariant densities for generalized β-maps. Ergod. Theory Dyn. Syst. 27 (2007) 1583-1598. | Zbl
,[14] Beta-expansions with negative bases. Integers 9 (2009) 239-259. | MR | Zbl
and ,[15] Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc., to appear. | MR | Zbl
and ,[16] Factor complexity of infinite words associated with non-simple Parry numbers. Integers 9 (2009) 281-310. | MR | Zbl
and ,[17] Dynamical properties of the negative beta-transformation. To appear in Ergod. Theory Dyn. Syst. arXiv:1101.2366v2. | MR | Zbl
and ,[18] Ito-Sadahiro numbers vs. Parry numbers. Acta Polytech. 51 (2011) 59-64.
and ,[19] On the β-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11 (1960) 401-416. | MR | Zbl
,[20] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957) 477-493. | MR | Zbl
,[21] Groups, tilings and finite state automata. AMS Colloquium Lectures (1989).
,Cité par Sources :