We present the rough path theory introduced by Lyons, using the swewing lemma of Feyel and de Lapradelle.
Mots-clés : rough paths, differential equations
@article{PS_2012__16__479_0, author = {Coutin, Laure}, title = {Rough paths \protect\emph{via }sewing {Lemma}}, journal = {ESAIM: Probability and Statistics}, pages = {479--526}, publisher = {EDP-Sciences}, volume = {16}, year = {2012}, doi = {10.1051/ps/2011108}, zbl = {1277.47081}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2011108/} }
Coutin, Laure. Rough paths via sewing Lemma. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 479-526. doi : 10.1051/ps/2011108. http://archive.numdam.org/articles/10.1051/ps/2011108/
[1] An introduction to the geometry of stochastic lows. Imperial Press College, London (2004). | MR | Zbl
,[2] Sur une intégrale pour les processus à α-variation bornée. Ann. Probab. 17 (1999) 1521-1535. | MR | Zbl
,[3] Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957) 163-178. | MR | Zbl
,[4] Integration of paths; a faithful representation of paths by non-commutative formal power series. Trans. Amer. Math Soc. 89 (1958) 395-407. | MR | Zbl
,[5] Integration of paths, Bull. Amer. Math. Soc. 83 (1977) 831-879. | MR | Zbl
,[6] Quelques espaces fonctionnels associés à des processus gaussiens. Studia Math. 107 (1993) 171-204. | MR | Zbl
, and ,[7] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR | Zbl
and ,[8] Enhanced Gaussian processes and applications. ESAIM Probab. Stat. 13 (2009) 247-260. | Numdam | MR | Zbl
and ,[9] Differential equations driven by rough paths : an approach via discrete approximation. Appl. Math. Res. Express. AMRX 2 (2007) abm009, 40. | MR | Zbl
,[10] Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Not. IMRN 24 (2007) rnm124, 26. | MR | Zbl
,[11] Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. Henri Poincaré Sect. B (N.S.) 13 (1977) 99-125. | Numdam | MR | Zbl
,[12] Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006) 860-892 (electronic). | MR | Zbl
and ,[13] Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge University Press (2008). | MR | Zbl
and ,[14] Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 369-413. | Numdam | MR | Zbl
and ,[15] Controlling rough paths. J. Funct. Anal. 216 (2004) 86-140. | MR | Zbl
,[16] Rough path analysis via fractional calculus. Trans. Amer. Math. Soc. 361 (2009) 2689-2718. | MR | Zbl
and ,[17] Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths. J. Funct. Anal. 243 (2007) 270-322. | MR | Zbl
and ,[18] An introduction to rough paths. Séminaire de probabilités, XXXVII 1832 (2003) 1-59. | MR | Zbl
,[19] Yet another introduction to rough paths. Séminaire de Probabilités, Lect. Notes in Maths XLII (2009) 1-101. | MR | Zbl
,[20] On rough differential equations. Electron. J. Probab. 14 (2009) 341-364. | MR | Zbl
,[21] Differential equations driven by rough signals. I. An extension of an inequality of L.C. Young. Math. Res. Lett. 1 (1994) 451-464. | MR | Zbl
,[22] Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR | Zbl
,[23] System control and rough paths. Oxford Mathematical Monographs. Oxford University Press, Oxford, Oxford Science Publications (2002). | MR | Zbl
and ,[24] Differential equations driven by rough paths Ecole d'été de probabilités de Saint-Flour XXXIV (2004), Lectures Notes in Math 1908. J. Picard Ed., Springer, Berlin (2007). | MR | Zbl
, and ,[25] A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one, in Séminaire de probabilités XLI, Lecture Notes in Math. 1934. Springer, Berlin (2008) 181-197. | MR | Zbl
,[26] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | Zbl
and ,[27] Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon (1993). Theory and applications, Edited and with a foreword by S.M. Nikolski Ed., Translated from the 1987 Russian original, Revised by the authors. | MR | Zbl
, and ,[28] Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30. Princeton University Press, Princeton, N.J. (1970). | MR | Zbl
,[29] On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6 (1978) 19-41. | MR | Zbl
,[30] Math. Ann. 111 (1935) 767-776. | MR | Zbl
, .[31] An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936) 251-282. | MR | Zbl
,[32] On the link between fractional and stochastic calculus, in Stochastic dynamics, Bremen (1997), Springer, New York (1999) 305-325. | MR | Zbl
,Cité par Sources :