Solving the Crop Allocation Problem using Hard and Soft Constraints
RAIRO - Operations Research - Recherche Opérationnelle, Volume 47 (2013) no. 2, pp. 151-172.

Application tools for the crop allocation problem (CAP) are required for agricultural advisors to design more efficient farming systems. Despite the extensive treatment of this issue by agronomists in the past, few methods tackle the crop allocation problem considering both the spatial and the temporal aspects of the CAP. In this paper, we precisely propose an original formulation addressing the crop allocation planning problem while taking farmers' management choices into account. These choices are naturally represented by hard and soft constraints in the Weighted CSP formalism. We illustrate our proposition by solving a medium-size virtual farm using either a WCSP solver (toulbar2) or an ILP solver (NumberJack/SCIP). This preliminary work foreshadows the development of a decision-aid tool for supporting farmers in their crop allocation strategies.

DOI: 10.1051/ro/2013032
Classification: 90C11, 90C27, 90C90
Keywords: weighted constraint satisfaction problem, integer linear programming, crop allocation problem
     author = {Akplogan, Mahuna and de Givry, Simon and M\'etivier, Jean-Philippe and Quesnel, Gauthier and Joannon, Alexandre and Garcia, Fr\'ed\'erick},
     title = {Solving the {Crop} {Allocation} {Problem} using {Hard} and {Soft} {Constraints}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {151--172},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {2},
     year = {2013},
     doi = {10.1051/ro/2013032},
     mrnumber = {3055156},
     zbl = {1270.90033},
     language = {en},
     url = {}
AU  - Akplogan, Mahuna
AU  - de Givry, Simon
AU  - Métivier, Jean-Philippe
AU  - Quesnel, Gauthier
AU  - Joannon, Alexandre
AU  - Garcia, Frédérick
TI  - Solving the Crop Allocation Problem using Hard and Soft Constraints
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2013
SP  - 151
EP  - 172
VL  - 47
IS  - 2
PB  - EDP-Sciences
UR  -
DO  - 10.1051/ro/2013032
LA  - en
ID  - RO_2013__47_2_151_0
ER  - 
%0 Journal Article
%A Akplogan, Mahuna
%A de Givry, Simon
%A Métivier, Jean-Philippe
%A Quesnel, Gauthier
%A Joannon, Alexandre
%A Garcia, Frédérick
%T Solving the Crop Allocation Problem using Hard and Soft Constraints
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2013
%P 151-172
%V 47
%N 2
%I EDP-Sciences
%R 10.1051/ro/2013032
%G en
%F RO_2013__47_2_151_0
Akplogan, Mahuna; de Givry, Simon; Métivier, Jean-Philippe; Quesnel, Gauthier; Joannon, Alexandre; Garcia, Frédérick. Solving the Crop Allocation Problem using Hard and Soft Constraints. RAIRO - Operations Research - Recherche Opérationnelle, Volume 47 (2013) no. 2, pp. 151-172. doi : 10.1051/ro/2013032.

[1] D. Allouche, C. Bessiere, P. Boizumault, S. De Givry, P. Gutierrez, S. Loudni, JP. Métivier and T. Schiex, Decomposing Global Cost Functions, in Proc. AAAI-12, Toronto, Canada (2012).

[2] D. Allouche, S. Traoré, I. André, S. De Givry, G. Katsirelos, S. Barbe and T. Schiex, Computational protein design as a cost function network optimization problem, in Proc. CP-12, Quebec City, Canada (2012).

[3] J. Annetts and E. Audsley, Multiple objective linear programming for environmental farm planning. J. Oper. Res. Soc. 53 (2002) 933-943. | Zbl

[4] K. Apt and S. Brand, Infinite Qualitative Simulations by Means of Constraint Programming, in Proc. CP-06, Nantes, France (2006) 29-43.

[5] J. Bachinger and P. Zander, ROTOR, a tool for generating and evaluating crop rotations for organic farming systems. Europ. J. Agron. 26 (2007) 130-143.

[6] N. Beldiceanu, I. Katriel and S. Thiel, Filtering algorithms for the same constraint, in Proc. CPAIOR-04, Nice, France (2004) 65-79. | Zbl

[7] M.S. Castellazzi, J. Matthews, F. Angevin, C. Sausse, G.A. Wood, P.J. Burgess, I. Brown, K.F. Conrad and J.N. Perry, Simulation scenarios of spatio-temporal arrangement of crops at the landscape scale. Envir. Modell. Soft. 25 (2010) 1881-1889.

[8] M. Cooper, S. De Givry, M. Sanchez, T. Schiex, M. Zytnicki and T. Werner, Soft arc consistency revisited. Artificial Intell. 174 (2010) 449-478. | MR | Zbl

[9] S. Dogliotti, W.A.H. Rossing and M.K. Van Ittersum, ROTAT, a tool for systematically generating crop rotations. Eur. J. Agron. 19 (2003) 239-250.

[10] J. Dury, The cropping-plan decision-making: A farm level modelling and simulation approach. PhD thesis, INP Toulouse, France (2011).

[11] J. Dury, N. Schaller, F. Garcia, A. Reynaud and JE. Bergez, Models to support cropping plan and crop rotation decisions. A review. Agron. Sustain. Develop. 32 567-580, 2012.

[12] T. El-Nazer and B.A. Mccarl, The Choice of Crop Rotation: A Modeling Approach and Case Study. Am. J. Agric. Econ. 68 (1986) 127-136.

[13] S. De Givry, M. Zytnicki, F. Heras and J. Larrosa, Existential arc consistency: Getting closer to full arc consistency in weighted CSPs, in Proc. IJCAI-05, Edinburgh, Scotland (2005).

[14] W.D. Harvey and M.L. Ginsberg, Limited discrepency search, in Proc. IJCAI-95, Montréal, Canada (1995).

[15] E.O. Heady, The Economics of Rotations with Farm and Production Policy Applications. J. Farm Econ. (1948) 645-664.

[16] W.J. Van Hoeve, G. Pesant,L.M. Rousseau, On global warming: flow-based soft global constraints. J. Heurist. (2006) 347-373. | Zbl

[17] S. Irnich and G. Desaulniers, Shortest Path Problems with Resource Constraints, chapter 2, GERAD 25th Anniversary Series. Springer (2005) 33-65. | Zbl

[18] T. Itoh, H. Ishii and T. Nanseki, A model of crop planning under uncertainty in agricultural management. Int. J. Prod. Econ. 81-82 (2003) 555-558.

[19] W.K. Kein Haneveld and A.W. Stegeman, Crop succession requirements in agricultural production planning. Eur. J. Oper. Res. 166 (2005) 406-429. | MR | Zbl

[20] A. Koster, S. Van Hoesel and A. Kolen. Solving frequency assignment problems via tree-decomposition. Tech. Rep. RM/99/011, Universiteit Maastricht, The Netherlands (1999). | MR | Zbl

[21] J. Lee and K.L. Leung, Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction, in Proc. IJCAI'09, Pasadena, CA (2009) 559-565.

[22] J. Lee and K.L. Leung, A stronger consistency for soft global constraints in weighted constraint satisfaction. in Proc. AAAI'10, Atlanta, GA (2010).

[23] J. Lee and K.M. Leung, Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction. JAIR 43 (2012) 257-292. | MR | Zbl

[24] J. Lee and Y.W. Shum, Modeling Soft Global Constraints as Linear Programs in Weighted Constraint Satisfaction, in Proc. ICTAI-11, Boca Raton, FL (2011) 305-312.

[25] B. Leteinturier, J. Herman, F. D. Longueville, L. Quintin and R. Oger, Adaptation of a crop sequence indicator based on a land parcel management system. Agric. Ecosyst. Environ. 112 (2006) 324-334.

[26] K. Marriott, N. Nethercote, R. Rafeh, P. Stuckey, M. De La Banda and M. Wallace, The design of the Zinc modelling language. Constraints 13 (2008) 229-267. | MR | Zbl

[27] B. A. Mccarl, W.V. Candler, D.H. Doster and P.R. Robbins, Experiences with farmer oriented linear programming for crop planning. Can. J. Agric. Econ./Rev. Can. Agroecon. 25 (1977) 17-30.

[28] P. Meseguer, F. Rossi and T. Schiex, Soft Constraints Processing, on edited by F. Rossi, P. van Beek and T. Walsh. Handbook Constraint Programm, chapter 9. Elsevier (2006).

[29] J.-P. Métivier, P. Boizumault and S. Loudni, Solving nurse rostering problems using soft global constraints, in Proc. CP-09, Lisbon, Portugal (2009) 73-87.

[30] G. Pesant, A regular language membership constraint for finite sequences of variables, in Proc. CP-04, Toronto, Canada (2004) 482-495. | Zbl

[31] T. Petit and E. Poder, The Soft Cumulative Constraint. CoRR (2009).

[32] J.-C. Régin, Generalized arc consistency for global cardinality constraint, in Proc. AAAI'96, Portland, OR (1996) 209-215. | MR

[33] M. Sánchez, S. De Givry and T. Schiex, Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques. Constraints 13 (2008) 130-154. | MR | Zbl

[34] R. Sarker and T. Ray, An improved evolutionary algorithm for solving multi-objective crop planning models. Comput. Electr. Agric. 68 (2009) 191-199.

[35] N. Stone, R. Buick, J. Roach, R. Scheckler and R. Rupani, The planning problem in agriculture: farm-level crop rotation planning as an example. AI Appl. 6 (1992) 59-75.

Cited by Sources: