Time-dependent Simple Temporal Networks: Properties and Algorithms
RAIRO - Operations Research - Recherche Opérationnelle, Volume 47 (2013) no. 2, pp. 173-198.

Simple Temporal Networks (STN) allow conjunctions of minimum and maximum distance constraints between pairs of temporal positions to be represented. This paper introduces an extension of STN called Time-dependent STN (TSTN), which covers temporal constraints for which the minimum and maximum distances required between two temporal positions x and y are not necessarily constant but may depend on the assignments of x and y. Such constraints are useful to model problems in which the duration of an activity may depend on its starting time, or problems in which the transition time required between two activities may depend on the time at which the transition is triggered. Properties of the new framework are analyzed, and standard STN solving techniques are extended to TSTN. The contributions are applied to the management of temporal constraints for so-called agile Earth observation satellites.

DOI: 10.1051/ro/2013033
Classification: 6802, 9002
Keywords: temporal constraints, time-dependent scheduling, constraint propagation, agile satellites
@article{RO_2013__47_2_173_0,
     author = {Pralet, C\'edric and Verfaillie, G\'erard},
     title = {Time-dependent {Simple} {Temporal} {Networks:} {Properties} and {Algorithms}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {173--198},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {2},
     year = {2013},
     doi = {10.1051/ro/2013033},
     mrnumber = {3055157},
     zbl = {1267.68218},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2013033/}
}
TY  - JOUR
AU  - Pralet, Cédric
AU  - Verfaillie, Gérard
TI  - Time-dependent Simple Temporal Networks: Properties and Algorithms
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2013
SP  - 173
EP  - 198
VL  - 47
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2013033/
DO  - 10.1051/ro/2013033
LA  - en
ID  - RO_2013__47_2_173_0
ER  - 
%0 Journal Article
%A Pralet, Cédric
%A Verfaillie, Gérard
%T Time-dependent Simple Temporal Networks: Properties and Algorithms
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2013
%P 173-198
%V 47
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2013033/
%R 10.1051/ro/2013033
%G en
%F RO_2013__47_2_173_0
Pralet, Cédric; Verfaillie, Gérard. Time-dependent Simple Temporal Networks: Properties and Algorithms. RAIRO - Operations Research - Recherche Opérationnelle, Volume 47 (2013) no. 2, pp. 173-198. doi : 10.1051/ro/2013033. http://archive.numdam.org/articles/10.1051/ro/2013033/

[1] R. Bellman, On a routing problem. Quart. Appl. Math. 16 (1958) 87-90. | MR | Zbl

[2] M. Bender, R. Cole, E. Demaine, M. Farach-Colton and J. Zito, Two simplified algorithms for maintaining order in a list, in Proc. of ESA-02 (2002) 152-164. | Zbl

[3] T. Benoist, B. Estellon, F. Gardi, R. Megel and K. Nouioua, LocalSolver 1.x: a black-box local-search solver for 0-1 programming. 4OR: A Quart. J. Oper. Res. 9 (2011) 299-316. | MR | Zbl

[4] R. Cervoni, A. Cesta and A. Oddi, Managing dynamic temporal constraint networks. in Proc. of AIPS-94 (1994) 13-18.

[5] A. Cesta and A. Oddi, Gaining efficiency and flexibility in the simple temporal problem. in Proc. TIME-96 (1996) 45-50.

[6] Challenge ROADEF-03. Handling the mission of Earth observation satellites (2003). http://challenge.roadef.org/2003/fr/.

[7] T. Cheng, Q. Ding and B. Lin, A concise survey of scheduling with time-dependent processing times. Eur. J. Oper. Res. (2004) 152 1-13. | MR | Zbl

[8] P. Codognet and D. Diaz, Compiling constraints in clp(FD). J. Logic Program. 27 (1996) 185-226. | MR | Zbl

[9] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks. Artif. Intell. 49 (1991) 61-95. | MR | Zbl

[10] R.W. Floyd, Algorithm 97: shortest path. Commun. ACM 5 (1962) 345.

[11] L.R. Ford and D.R. Fulkerson, Flows in networks. Princeton University Press (1962). | MR | Zbl

[12] S. Gawiejnowicz, Time-dependent scheduling. Springer (2008). | MR | Zbl

[13] A. Gerevini, A. Perini and F. Ricci, Incremental algorithms for managing temporal constraints, in Proc. of ICTAI-96 (1996) 360-365.

[14] B. Haeupler, T. Kavitha, R. Mathew, S. Sen and R. Tarjan, Incremental cycle detection, topological ordering, and strong component maintenance. ACM Trans. Algorithms 8 (2012). | MR | Zbl

[15] P. Van Hentenryck, Y. Deville and C. Teng, A generic arc-consistency algorithm and its specializations. Artif. Intell. 57 (1992) 291-321. | MR | Zbl

[16] P. Van Hentenryck and L. Michel, Constraint-based local search. The MIT Press (2005).

[17] M. Lemaître, G. Verfaillie, F. Jouhaud, J.-M. Lachiver and N. Bataille, Selecting and scheduling observations of agile satellites. Aerospace Science and Technology 6 (2002) 367-381.

[18] U. Montanari, Networks of constraints: fundamental properties and applications to picture processing. Inf. Sci. 7 (1974) 95-132. | MR | Zbl

[19] P. Morris, R. Morris, L. Khatib, S. Ramakrishnan and A. Bachmann, Strategies for global optimization of temporal preferences, in Proc. of CP-04 (2004) 408-422. Springer. | Zbl

[20] L. Planken, M. De Weerdt and R. Van Der Krogt, P3C: a new algorithm for the simple temporal problem, in Proc. of ICAPS-08 (2008) 256-263.

[21] L. Planken, M. De Weerdt and N. Yorke-Smith, Incrementally solving STNs by enforcing partial path consistency, in Proc. of ICAPS-10 (2010) 129-136.

[22] C. Pralet and G. Verfaillie, Réseaux temporels simples étendus. Application à la gestion de satellites agiles, in Proc. of JFPC-12 (2012) 264-273.

[23] C. Pralet and G. Verfaillie, Time-dependent simple temporal networks, in Proc. of CP-12 (2012) 608-623.

[24] L. Roditty and U. Zwick, Improved dynamic reachability algorithms for directed graphs. SIAM J. Comput. 37 (2008) 1455-1471. | MR | Zbl

[25] I. Shu, R. Effinger and B. Williams, Enabling fast flexible planning through incremental temporal reasoning with conflict extraction, in Proc. of ICAPS-05 (2005) 252-261.

[26] K. Stergiou and M. Koubarakis, Backtracking algorithms for disjunctions of temporal constraints. Artif. Intell. 120 (2000) 81-117. | MR | Zbl

[27] T. Vidal and H. Fargier, Handling contingency in temporal constraint networks: from consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11 (1999) 23-45. | Zbl

[28] T. Warshall, A theorem on Boolean matrices. J. ACM 9 (1962) 11-12. | MR | Zbl

[29] L. Xu and B. Choueiry, A new efficient algorithm for solving the simple temporal problem, in Proc. TIME-ICTL-03 (2003) 210-220.

Cited by Sources: