A regularization method for ill-posed bilevel optimization problems
RAIRO - Operations Research - Recherche Opérationnelle, Volume 40 (2006) no. 1, pp. 19-35.

We present a regularization method to approach a solution of the pessimistic formulation of ill-posed bilevel problems. This allows to overcome the difficulty arising from the non uniqueness of the lower level problems solutions and responses. We prove existence of approximated solutions, give convergence result using Hoffman-like assumptions. We end with objective value error estimates.

@article{RO_2006__40_1_19_0,
     author = {Bergounioux, Maitine and Haddou, Mounir},
     title = {A regularization method for ill-posed bilevel optimization problems},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {19--35},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {1},
     year = {2006},
     doi = {10.1051/ro:2006009},
     mrnumber = {2248420},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro:2006009/}
}
TY  - JOUR
AU  - Bergounioux, Maitine
AU  - Haddou, Mounir
TI  - A regularization method for ill-posed bilevel optimization problems
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2006
SP  - 19
EP  - 35
VL  - 40
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro:2006009/
DO  - 10.1051/ro:2006009
LA  - en
ID  - RO_2006__40_1_19_0
ER  - 
%0 Journal Article
%A Bergounioux, Maitine
%A Haddou, Mounir
%T A regularization method for ill-posed bilevel optimization problems
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2006
%P 19-35
%V 40
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro:2006009/
%R 10.1051/ro:2006009
%G en
%F RO_2006__40_1_19_0
Bergounioux, Maitine; Haddou, Mounir. A regularization method for ill-posed bilevel optimization problems. RAIRO - Operations Research - Recherche Opérationnelle, Volume 40 (2006) no. 1, pp. 19-35. doi : 10.1051/ro:2006009. http://archive.numdam.org/articles/10.1051/ro:2006009/

[1] A. Auslender and M. Teboulle, Asymptotic cones and functions in optimization and variational inequalities. Springer Monographs in Mathematics. Springer-Verlag, New York (2003). | MR | Zbl

[2] D. Azé and J.N. Corvellec, Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM: COCV 10 (2004) 409-425. | Numdam | Zbl

[3] D. Azé and A. Rahmouni, On primal-dual stability in convex optimization. J. Convex Anal. 3 (1996) 309-327. | Zbl

[4] J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Series in Operations Research, Springer-Verlag, New York (2000). | MR | Zbl

[5] L. Brotcorne, M. Labbé, P. Marcotte and G. Savard, A bilevel model for toll optimization on a multicommodity transportation network. Transportation Sci. 35 (2001) 1-14. | Zbl

[6] S. Dempe, Foundations of bilevel programming, in Nonconvex optimization and its applications. Kluwer Acad. Publ., Dordrecht (2002). | MR | Zbl

[7] M. Labbé, P. Marcotte and G. Savard, On a class of bilevel programs, in Nonlinear optimization and related topics, (Erice, 1998). Appl. Optim. 36 (2000) 183-206. | Zbl

[8] A.S. Lewis and J.-S. Pang, Error bounds for convex inequality systems, in Generalized convexity, generalized monotonicity: recent results (Luminy, 1996). Nonconvex Optim. Appl. 27 (1998) 75-110. | Zbl

[9] W. Li, Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7 (1997) 966-978. | Zbl

[10] P. Loridan and J. Morgan, New results on approximate solutions in two-level optimization. Optimization 20 (1989) 819-836. | Zbl

[11] P. Loridan and J. Morgan, Regularizations for two-level optimization problems. Advances in optimization. Lect. Notes Econ. Math. 382 (1992) 239-255. | Zbl

[12] P. Marcotte and G. Savard, A bilevel programming approach to Price Setting in: Decision and Control in Management Science, in Essays in Honor of Alain Haurie, edited by G. Zaccour. Kluwer Academic Publishers (2002) 97-117.

[13] K.F. Ng and X.Y. Zheng, Global error bounds with fractional exponents. Math. Program. Ser. B 88 (2000) 357-370. | Zbl

[14] T.Q. Nguyen, M. Bouhtou and J.-L. Lutton, D.C. approach to bilevel bilinear programming problem: application in telecommunication pricing, in Optimization and optimal control (Ulaanbaatar, 2002). Ser. Comput. Oper. Res. 1 (2003) 211-231. | Zbl

[15] Z. Wu and J. Ye, On error bounds for lower semicontinuous functions. Math. Program. Ser. A (2002). | MR | Zbl

[16] J. Zhao, The lower semicontinuity of optimal solution sets. J. Math. Anal. Appl. 207 (1997) 240-254. | Zbl

Cited by Sources: