Numerical solutions of the mass transfer problem
RAIRO - Operations Research - Recherche Opérationnelle, Volume 40 (2006) no. 1, pp. 1-17.

Let μ and ν be two probability measures on the real line and let c be a lower semicontinuous function on the plane. The mass transfer problem consists in determining a measure ξ whose marginals coincide with μ and ν, and whose total cost c(x,y)dξ(x,y) is minimum. In this paper we present three algorithms to solve numerically this Monge-Kantorovitch problem when the commodity being shipped is one-dimensional and not necessarily confined to a bounded interval. We illustrate these numerical methods and determine the convergence rate.

DOI: 10.1051/ro:2006011
Keywords: continuous programming, transportation, mass transfer, optimization
@article{RO_2006__40_1_1_0,
     author = {Dubuc, Serge and Kagabo, Issa},
     title = {Numerical solutions of the mass transfer problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1--17},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {1},
     year = {2006},
     doi = {10.1051/ro:2006011},
     mrnumber = {2248419},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro:2006011/}
}
TY  - JOUR
AU  - Dubuc, Serge
AU  - Kagabo, Issa
TI  - Numerical solutions of the mass transfer problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2006
SP  - 1
EP  - 17
VL  - 40
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro:2006011/
DO  - 10.1051/ro:2006011
LA  - en
ID  - RO_2006__40_1_1_0
ER  - 
%0 Journal Article
%A Dubuc, Serge
%A Kagabo, Issa
%T Numerical solutions of the mass transfer problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2006
%P 1-17
%V 40
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro:2006011/
%R 10.1051/ro:2006011
%G en
%F RO_2006__40_1_1_0
Dubuc, Serge; Kagabo, Issa. Numerical solutions of the mass transfer problem. RAIRO - Operations Research - Recherche Opérationnelle, Volume 40 (2006) no. 1, pp. 1-17. doi : 10.1051/ro:2006011. http://archive.numdam.org/articles/10.1051/ro:2006011/

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Washington, D.C. (1964). | Zbl

[2] E.J. Anderson and A.B. Philpott, Duality and an algorithm for a class of continuous transportation problems. Math. Oper. Res. 9 (1984) 222-231. | Zbl

[3] E.J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces. Theory and Application. John Wiley & Sons, Chichester (1987). | MR | Zbl

[4] P.E. Appell, Mémoire sur les déblais et les remblais des systèmes continus ou discontinus 181-208. | JFM

[5] P.E. Appell, Le problème géométrique des déblais et remblais. Gauthier-Villars, Paris (1928). | JFM | Numdam

[6] S. Dubuc and M. Tanguay, Déplacement de matériel continu unidimensionnel à moindre coût. RAIRO Rech. Oper., 20 (1986) 139-161. | Numdam | Zbl

[7] M. Fréchet, Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon 14 (1951) 53-77. | Zbl

[8] M.D. Grigoriadis, An efficient implementation of the network simplex method. Netflow in Pisa (Pisa, 1983). Math. Program. Stud. 26 (1986) 83-111. | Zbl

[9] F.L. Hitchcock, The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941) 224-230. | JFM

[10] W. Hoeffding, Masstabinvariante Korrelations-theorie. Schr. Math. Inst. Univ. Berlin 5 (1940) 181-233. | JFM

[11] L. Kantorovitch, On the translocation of masses. Doklady Akad. Nauk. SSSR 37 (1942) 199-201. | Zbl

[12] H.G. Kellerer, Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67 (1984) 399-432. | Zbl

[13] V.L. Levin and A.A. Milyutin, The Problem of Mass Transfer with a Discontinuous Cost Function and the Mass Statement of the Duality for Convex Extremal Problems. Uspehi Mat. Nauk. 34 (1979) 3-68. | Zbl

[14] G. Monge, Mémoire sur la théorie des déblais et des remblais. Mém. Math. Phys. Acad. Royale Sci., Paris (1781) 666-704.

[15] S.T. Rachev and L. Rüschendorf, Solution of some transportation problems with relaxed or additional constraints SIAM J. Control Optim. 32 (1994), 673-689. | Zbl

[16] A.H. Tchen, Inequalities for distributions with given marginals Ann. Prob. 8 (1980) 814-827. | Zbl

Cited by Sources: