The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u>u∗, with u∗ the non-degenerate critical parameter for the percolation of the vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math. 62 (2009) 831-858]. We prove a stretched exponential decay of the connectivity function for the vacant set at level u, when u>u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab. 37 (2009) 1715-1746]. It is presently an open problem whether u∗∗ actually coincides with u∗.
Le modèle des entrelacs aléatoires sur ℤd, d≥3, a été récemment introduit dans [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. Un nombre positif ou nul u contrôle la densité des entrelacs aléatoires sur ℤd. Dans la note présente, nous étudions les propriétés de connectivité du complémentaire de l'entrelac au niveau u, dans le régime non percolatif u>u∗, avec u∗ le nombre positif qui est le paramètre critique de la percolation du complémentaire des entrelacs, voir [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math. 62 (2009) 831-858]. Nous montrons une propriété de décroissance sous-exponentielle de la fonction de connectivité au niveau u, lorsque u>u∗∗, où u∗∗ est un autre paramètre critique introduit dans [Ann. Probab. 37 (2009) 1715-1746]. La question de savoir si u∗ et u∗∗ sont égaux est pour le moment ouverte.
Keywords: connectivity function, random interlacements, percolation
@article{AIHPB_2010__46_4_976_0, author = {Sidoravicius, Vladas and Sznitman, Alain-Sol}, title = {Connectivity bounds for the vacant set of random interlacements}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {976--990}, publisher = {Gauthier-Villars}, volume = {46}, number = {4}, year = {2010}, doi = {10.1214/09-AIHP335}, mrnumber = {2744881}, zbl = {1210.60107}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP335/} }
TY - JOUR AU - Sidoravicius, Vladas AU - Sznitman, Alain-Sol TI - Connectivity bounds for the vacant set of random interlacements JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 976 EP - 990 VL - 46 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP335/ DO - 10.1214/09-AIHP335 LA - en ID - AIHPB_2010__46_4_976_0 ER -
%0 Journal Article %A Sidoravicius, Vladas %A Sznitman, Alain-Sol %T Connectivity bounds for the vacant set of random interlacements %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 976-990 %V 46 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/09-AIHP335/ %R 10.1214/09-AIHP335 %G en %F AIHPB_2010__46_4_976_0
Sidoravicius, Vladas; Sznitman, Alain-Sol. Connectivity bounds for the vacant set of random interlacements. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 4, pp. 976-990. doi : 10.1214/09-AIHP335. http://archive.numdam.org/articles/10.1214/09-AIHP335/
[1] Percolation, 2nd edition. Springer, Berlin, 1999. | MR
.[2] Intersections of Random Walks. Birkhäuser, Basel, 1991. | MR | Zbl
.[3] Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 (2009) 831-858. | MR | Zbl
and .[4] Vacant set of random interlacements and percolation. Ann. Math. To appear. Available at http://www.math.ethz.ch/u/sznitman/preprints. | MR | Zbl
.[5] Random walks on discrete cylinders and random interlacements. Probab. Theory Related Fields 145 (2009) 143-174. | MR | Zbl
.[6] Upper bound on the disconnection time of discrete cylinders and random interlacements. Ann. Probab. 37 (2009) 1715-1746. | MR | Zbl
.[7] On the uniqueness of the infinite cluster of the vacant set of random interlacements. Ann. Appl. Probab. 19 (2009) 454-466. | MR | Zbl
.[8] Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14 (2009) 1604-1627. | MR | Zbl
.[9] On the size of a finite vacant cluster of random interlacements with small intensity. Preprint. Available at http://www.math.ethz.ch/~teixeira/.
.[10] Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13 (2008) 140-150. | MR | Zbl
.[11] Random walks on discrete cylinders with large bases and random interlacements. Ann. Probab. To appear. Available at arXiv:0907.1627. | MR | Zbl
.Cited by Sources: