On considère des marches aléatoires excitées sur ℤ avec un nombre borné de cookies i.i.d. à chaque site, ceci sans l'hypothèse de positivité. Auparavant, Kosygina et Zerner [15] ont établi que si la dérive totale moyenne par site, δ, est strictement supérieur à 1, alors la marche est transiente (vers la droite) et, de plus, pour δ>4 il y a un théorème central limite pour la position de la marche. Ici, on démontre que pour δ∈(2, 4] cette position, convenablement centrée et réduite, converge vers une loi stable de paramètre δ/2. L'approche permet également d'étendre les résultats de Basdevant et Singh [2] pour δ∈(1, 2] à notre cadre plus général.
We consider excited random walks (ERWs) on ℤ with a bounded number of i.i.d. cookies per site without the non-negativity assumption on the drifts induced by the cookies. Kosygina and Zerner [15] have shown that when the total expected drift per site, δ, is larger than 1 then ERW is transient to the right and, moreover, for δ>4 under the averaged measure it obeys the Central Limit Theorem. We show that when δ∈(2, 4] the limiting behavior of an appropriately centered and scaled excited random walk under the averaged measure is described by a strictly stable law with parameter δ/2. Our method also extends the results obtained by Basdevant and Singh [2] for δ∈(1, 2] under the non-negativity assumption to the setting which allows both positive and negative cookies.
Mots clés : excited random walk, limit theorem, stable law, branching process, diffusion approximation
@article{AIHPB_2011__47_2_575_0, author = {Kosygina, Elena and Mountford, Thomas}, title = {Limit laws of transient excited random walks on integers}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {575--600}, publisher = {Gauthier-Villars}, volume = {47}, number = {2}, year = {2011}, doi = {10.1214/10-AIHP376}, mrnumber = {2814424}, zbl = {1215.60057}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP376/} }
TY - JOUR AU - Kosygina, Elena AU - Mountford, Thomas TI - Limit laws of transient excited random walks on integers JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 575 EP - 600 VL - 47 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP376/ DO - 10.1214/10-AIHP376 LA - en ID - AIHPB_2011__47_2_575_0 ER -
%0 Journal Article %A Kosygina, Elena %A Mountford, Thomas %T Limit laws of transient excited random walks on integers %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 575-600 %V 47 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP376/ %R 10.1214/10-AIHP376 %G en %F AIHPB_2011__47_2_575_0
Kosygina, Elena; Mountford, Thomas. Limit laws of transient excited random walks on integers. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 2, pp. 575-600. doi : 10.1214/10-AIHP376. http://archive.numdam.org/articles/10.1214/10-AIHP376/
[1] On the speed of a cookie random walk. Probab. Theory Related Fields 141 (2008) 625-645. | MR | Zbl
and .[2] Rate of growth of a transient cookie random walk. Electron. J. Probab. 13 (2008) 811-851. | MR | Zbl
and .[3] Excited random walk. Electron. Comm. Probab. 8 (2003) 86-92. | MR | Zbl
and .[4] Central limit theorem for the excited random walk in dimension d≥2. Elect. Comm. in Probab. 12 (2007) 303-314. | MR | Zbl
and .[5] Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion. Probab. Theory Related Fields 113 (1999) 519-534. | MR | Zbl
and .[6] Brownian motion and random walk perturbed at extrema. Probab. Theory Related Fields 113 (1999) 501-518. | MR | Zbl
.[7] Central limit theorem for excited random walk in the recurrent regime. Preprint, 2008. | MR
.[8] Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1996. | MR | Zbl
.[9] Stopped Random Walks. Limit Theorems and Applications. Applied Probability. A Series of the Applied Probability Trust 5. Springer, New York, 1988. | MR | Zbl
.[10] Markov Processes. Wiley, New York, 1986. | MR | Zbl
and .[11] An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. | MR | Zbl
.[12] Life spans of Galton-Watson processes with migration (Russian). In Asymptotic Problems in Probability Theory and Mathematical Statistics 117-135. T. A. Azlarov and S. K. Formanov (Eds). Fan, Tashkent, 1990. | MR
, and .[13] Monotonicity for excited random walk in high dimensions, 2008. Available at arXiv:0803.1881v2 [math.PR]. | MR | Zbl
and .[14] A limit law for random walk in random environment. Compos. Math. 30 (1975) 145-168. | Numdam | MR | Zbl
, and .[15] Positively and negatively excited random walks, with branching processes. Electron. J. Probab. 13 (2008) 1952-1979. | MR | Zbl
and .[16] Random walk in a one-dimensional random medium. Teor. Verojatn. Primen. 18 (1973) 406-408. | MR | Zbl
.[17] Excited random walk in three dimensions has positive speed. Preprint, 2003. Available at arXiv:0310305v1 [math.PR].
.[18] On the speed of the one-dimensional excited random walk in the transient regime. ALEA 2 (2006) 279-296. | MR | Zbl
, and .[19] Multi-excited random walks on integers. Probab. Theory Related Fields 133 (2005) 98-122. | MR | Zbl
.[20] Recurrence and transience of excited random walks on ℤd and strips. Electron. Comm. Probab. 11 (2006) 118-128. | MR | Zbl
.Cité par Sources :