Soit X un processus de Markov récurrent positif à trajectoires continues et à valeurs dans ℝ. Soient S sa fonction d'échelle et m sa mesure de vitesse. Pour a∈ℝ notons Ba+=supx≥am(]x, +∞[)(S(x)-S(a)), Ba-=supx≤am(]-∞; x[)(S(a)-S(x)). Il est bien connu que la finitude de Ba± est équivalente à l'existence d'un trou spectral du générateur associé à X. Nous montrons comment ces quantités apparaissent d'une manière indépendante dans l'étude des temps d'atteinte de X. Ensuite nous établissons une relation directe entre les moments exponentiels et le trou spectral, en améliorant en plus leurs encadrements classiques.
Let X be a regular continuous positively recurrent Markov process with state space ℝ, scale function S and speed measure m. For a∈ℝ denote Ba+=supx≥am(]x, +∞[)(S(x)-S(a)), Ba-=supx≤am(]-∞; x[)(S(a)-S(x)). It is well known that the finiteness of Ba± is equivalent to the existence of spectral gaps of generators associated with X. We show how these quantities appear independently in the study of the exponential moments of hitting times of X. Then we establish a very direct relation between exponential moments and spectral gaps, all by improving their classical bounds.
Mots clés : recurrence, linear Markov process, exponential moments, hitting times, Poincaré inequality, spectral gap, Dirichlet form
@article{AIHPB_2011__47_3_679_0, author = {Loukianov, Oleg and Loukianova, Dasha and Song, Shiqi}, title = {Spectral gaps and exponential integrability of hitting times for linear diffusions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {679--698}, publisher = {Gauthier-Villars}, volume = {47}, number = {3}, year = {2011}, doi = {10.1214/10-AIHP380}, mrnumber = {2841071}, zbl = {1233.60044}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP380/} }
TY - JOUR AU - Loukianov, Oleg AU - Loukianova, Dasha AU - Song, Shiqi TI - Spectral gaps and exponential integrability of hitting times for linear diffusions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 679 EP - 698 VL - 47 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP380/ DO - 10.1214/10-AIHP380 LA - en ID - AIHPB_2011__47_3_679_0 ER -
%0 Journal Article %A Loukianov, Oleg %A Loukianova, Dasha %A Song, Shiqi %T Spectral gaps and exponential integrability of hitting times for linear diffusions %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 679-698 %V 47 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP380/ %R 10.1214/10-AIHP380 %G en %F AIHPB_2011__47_3_679_0
Loukianov, Oleg; Loukianova, Dasha; Song, Shiqi. Spectral gaps and exponential integrability of hitting times for linear diffusions. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 3, pp. 679-698. doi : 10.1214/10-AIHP380. http://archive.numdam.org/articles/10.1214/10-AIHP380/
[1] L'hypercontractivité et son utilisation en théorie des semigroupes. In Lecture on Probability Theory, Saint Flour 1992 1-114. Lecture Notes in Mathematics 1581. Springer, Berlin, 1994. | MR | Zbl
.[2] Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1-28. | MR | Zbl
and .[3] Handbook of Brownian Motion - Facts and Formulae, 2nd edition. Birkhäuser, Basel, 2002. | MR | Zbl
and .[4] Exponential moments for hitting times of uniformly ergodic Markov processes. Ann. Probab. 11 (1983) 648-665. | MR | Zbl
and .[5] On occupation time of Markov processes. Trans. Amer. Math. Soc. 84 (1957) 444-458. | MR | Zbl
and .[6] Comportement des temps d'atteinte d'une diffusion fortement rentrante. In Seminaire de probabilités (Strasbourg), XXXI 168-175. Lecture Notes in Math. 1655. Springer, Berlin, 1997. | Numdam | MR | Zbl
and .[7] A result on the first-passage time of an Ornstein-Uhlenbeck process. Statist. Probab. Lett. 77 (2007) 1744-1749. | MR | Zbl
.[8] Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 (1995) 1671-1691. | MR | Zbl
, and .[9] Kac's moment formula and the Feyman-Kac formula for additive functionals of a Markov process. Stochastic Process. Appl. 79 (1999) 117-134. | MR | Zbl
and .[10] The asymptotic behavior of the first real eigenvalue of a second order elliptic operator with a small parameter in the highest derivatives. Indiana Univ. Math. J. 22 (1973) 1005-1015. | MR | Zbl
.[11] Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. Walter de Gruyter, Berlin, 1994. | MR | Zbl
, and .[12] Some remarks on the Raleigh process. J. Appl. Probab. 23 (1986) 398-408. | MR | Zbl
, , and .[13] On the distribution of certain Wiener functionals. Trans. Amer. Math. Soc. 65 (1949) 1-13. | MR | Zbl
.[14] On some connections between probability theory and differential and integral equations. In Proc. 2nd Berkeley Symp. Math. Stat. Prob. 189-215. J. Neyman (Ed.). Univ. of California Press, Berkeley, CA, 1951. | MR | Zbl
.[15] Criteria for the discreteness of the spectrum of a singular string. (Russian) Izv. Vyss. Ucebn. Zaved. Matematika 2 (1958) 136-153. | MR
and .[16] On positive solutions of the equation Ru+Vu=0. Theory. Probab. Appl. 4 (1959) 309-318.
.[17] Krein's spectral theory of strings and generalized diffusion processes. In Functional Analysis in Markov Processes (Katata/Kyoto, 1981) 235-259. Lecture Notes in Math. 923. Springer, Berlin, 1982. | MR | Zbl
and .[18] Polynomial bounds in the ergodic theorem for positive recurrent one-dimensional diffusions and integrability of hitting times. Ann. Inst. Henri Poincaré Probab. Stat. To appear. Available at arXiv:0903.2405. | Numdam | MR | Zbl
, and .[19] Poincare inequality and exponential integrability of hitting times for a linear diffusion. Prépublications de l'Equipe d'Analyse et Probabilités, n. 286. Université d'Evry, France, 2009. Available at arXiv:0903.2405.
, and .[20] Les inégalités de Sobolev logarithmiques et le trou spectral sur la droite reelle. In Sur les inégalités de Sobolev logarithmiques 97-112. Collection Panoramas et Synthèses de la SMF 10. Editions de la Société Mathématique de France, 2000.
and .[21] Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite? Ann. Fac. Sci. Toulouse Math. (6) 17 (2008) 121-192. | Numdam | MR | Zbl
.[22] Hardy's inequality with weights. Studia Math. XLIV (1972) 31-38. | MR | Zbl
.[23] Continuous Martingales and Brownian Motion, 2nd edition. Springer, Berlin, 1994. | MR | Zbl
and .[24] Weak Poincaré inequalities and L2-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564-603. | MR | Zbl
and .Cité par Sources :