In the context of high frequency data, one often has to deal with observations occurring at irregularly spaced times, at transaction times for example in finance. Here we examine how the estimation of the squared or other powers of the volatility is affected by irregularly spaced data. The emphasis is on the kind of assumptions on the sampling scheme which allow to provide consistent estimators, together with an associated central limit theorem, and especially when the sampling scheme depends on the observed process itself.
Dans le contexte de données à haute fréquences, il est fréquent de recueillir les informations le long d'une grille irrégulière, par exemple aux instants de transaction pour les données financières. Dans cet article, nous étudions comment l'estimation de l'intégrale du carré, ou d'autres puissances, de la volatilité est affectée par l'irrégularité des données. L'accent est mis sur le type d'hypothèses qu'il est nécessaire de faire sur la répartition des observations, en particulier lorsque celles-ci dépendent du processus observé lui-même, de façon à obtenir un théorème limite central pour nos estimateurs.
Keywords: quadratic variation, discrete observations, power variations, high frequency data, stable convergence
@article{AIHPB_2011__47_4_1197_0, author = {Hayashi, Takaki and Jacod, Jean and Yoshida, Nakahiro}, title = {Irregular sampling and central limit theorems for power variations : the continuous case}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1197--1218}, publisher = {Gauthier-Villars}, volume = {47}, number = {4}, year = {2011}, doi = {10.1214/11-AIHP432}, zbl = {1271.62198}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP432/} }
TY - JOUR AU - Hayashi, Takaki AU - Jacod, Jean AU - Yoshida, Nakahiro TI - Irregular sampling and central limit theorems for power variations : the continuous case JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 1197 EP - 1218 VL - 47 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP432/ DO - 10.1214/11-AIHP432 LA - en ID - AIHPB_2011__47_4_1197_0 ER -
%0 Journal Article %A Hayashi, Takaki %A Jacod, Jean %A Yoshida, Nakahiro %T Irregular sampling and central limit theorems for power variations : the continuous case %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 1197-1218 %V 47 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP432/ %R 10.1214/11-AIHP432 %G en %F AIHPB_2011__47_4_1197_0
Hayashi, Takaki; Jacod, Jean; Yoshida, Nakahiro. Irregular sampling and central limit theorems for power variations : the continuous case. Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 4, pp. 1197-1218. doi : 10.1214/11-AIHP432. http://archive.numdam.org/articles/10.1214/11-AIHP432/
[1] Power variation and time change. Theory Probab. Appl. 50 (2005) 1-15. | MR | Zbl
and .[2] Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. J. Econometrics 162 (2011) 149-169. | MR
, , and .[3] Estimation of continuous-time Markov processes sampled at random time intervals. Econometrica 72 (2004) 1773-1808. | MR | Zbl
and .[4] Central limit theorem for the realized volatility based on tick time sampling. Finance Stoch. 34 (2010) 209-233. | MR
.[5] Estimation of the diffusion coefficient for diffusion processes: Random sampling. Scand. J. Stat. 21 (1994) 193-221. | MR | Zbl
and .[6] Covariance measurement in the presence of non-synchronous trading and market microstructure noise. J. Econometrics 160 (2011) 58-68. | MR
and .[7] On covariance estimation of nonsynchronously observed diffusion processes. Bernoulli 11 (2005) 359-379. | MR | Zbl
and .[8] Nonsynchronous covariance estimator and limit theorem. Preprint, 2006.
and .[9] Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes. Ann. Inst. Statist. Math. 60 (2008) 357-396. | MR
and .[10] Statistics and high frequency data. In SEMSTAT Seminar, 2007. To appear.
.[11] Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Process. Appl. 118 (2008) 517-559. | MR | Zbl
.[12] Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26 (1998) 267-307. | MR | Zbl
and .[13] Limit Theorems for Stochastic Processes, 2d edition. Springer, Berlin, 2003. | MR | Zbl
and .[14] Fourier series methods for measurement of multivariate volatilities. Finance Stoch. 6 (2002) 49-61. | MR | Zbl
and .[15] ANOVA for diffusions and Itô processes. Ann. Statist. 34 (2006) 1931-1963. | MR
and .[16]
and loss in volatility measurement with flat price trading. Preprint, 2008.Cited by Sources: