We prove quenched hydrodynamic limit under hyperbolic time scaling for bounded attractive particle systems on in random ergodic environment. Our result is a strong law of large numbers, that we illustrate with various examples.
Nous obtenons la limite hydrodynamique trempée, sous un changement d’échelle hyperbolique, pour un système de particules attractif sur en milieu aléatoire ergodique, avec un nombre borné de particules par site. Notre résultat est une loi forte des grands nombres. Nous l’illustrons sur différents exemples.
Keywords: hydrodynamic limit, attractive particle system, scalar conservation law, entropy solution, random environment, quenched disorder, generalized misanthropes and $k$-step models
@article{AIHPB_2014__50_2_403_0, author = {Bahadoran, C. and Guiol, H. and Ravishankar, K. and Saada, E.}, title = {Euler hydrodynamics for attractive particle systems in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {403--424}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP510}, mrnumber = {3189077}, zbl = {1294.60116}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP510/} }
TY - JOUR AU - Bahadoran, C. AU - Guiol, H. AU - Ravishankar, K. AU - Saada, E. TI - Euler hydrodynamics for attractive particle systems in random environment JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 403 EP - 424 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP510/ DO - 10.1214/12-AIHP510 LA - en ID - AIHPB_2014__50_2_403_0 ER -
%0 Journal Article %A Bahadoran, C. %A Guiol, H. %A Ravishankar, K. %A Saada, E. %T Euler hydrodynamics for attractive particle systems in random environment %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 403-424 %V 50 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/12-AIHP510/ %R 10.1214/12-AIHP510 %G en %F AIHPB_2014__50_2_403_0
Bahadoran, C.; Guiol, H.; Ravishankar, K.; Saada, E. Euler hydrodynamics for attractive particle systems in random environment. Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 2, pp. 403-424. doi : 10.1214/12-AIHP510. http://archive.numdam.org/articles/10.1214/12-AIHP510/
[1] Invariant measures for the zero range process. Ann. Probab. 10 (1982) 525-547. | MR | Zbl
.[2] Hydrodynamic equations for attractive particle systems on . J. Stat. Phys. 47 (1987) 265-288. Correction to: “Hydrodynamic equations for attractive particle systems on ”. J. Stat. Phys. 113 (2003) 379-380. | MR | Zbl
and .[3] A constructive approach to Euler hydrodynamics for attractive particle systems 99 (2002) 1-30. | MR | Zbl
, , and .[4] Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab. 34 (2006) 1339-1369. | MR | Zbl
, , and .[5] Strong hydrodynamic limit for attractive particle systems on . Electron. J. Probab. 15 (2010) 1-43. | MR | Zbl
, , and .[6] Asymmetric processes with random rates. Stoch. Process. Appl. 61 (1996) 181-204. | MR | Zbl
, and .[7] Stationary blocking measures for one-dimensional nonzero mean exclusion processes. Ann. Probab. 30 (2002) 1082-1130. | MR | Zbl
and .[8] Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70 (1985) 509-523. | MR | Zbl
.[9] Realizable monotonicity for continuous-time Markov processes. Stochastic Process. Appl. 120 (2010) 959-982. | MR | Zbl
, and .[10] Bose-Einstein condensation in disordered exclusion models and relation to traffic flow. Europhys. Lett. 36 (1996) 13-18. DOI:10.1209/epl/i1996-00180-y.
.[11] Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields 13 (2007) 519-542. | MR | Zbl
.[12] Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields 127 (2003) 535-608. | MR | Zbl
and .[13] Stochastic monotonicity and realizable monotonicity. Ann. Probab. 29 (2001) 938-978. | MR | Zbl
and .[14] Hydrodynamics in a symmetric random medium. Comm. Math. Phys. 125 (1989) 13-25. | MR | Zbl
.[15] Couplings, attractiveness and hydrodynamics for conservative particle systems. Ann. Inst. H. Poincaré Probab. Statist. 46 (2010) 1132-1177. | Numdam | MR | Zbl
and .[16] Scaling limits for gradient systems in random environment. J. Stat. Phys. 131 (2008) 691-716. | MR | Zbl
and .[17] Some properties of -step exclusion processes. J. Stat. Phys. 94 (1999) 495-511. | MR | Zbl
.[18] Hydrodynamic limit of the exclusion process in inhomogeneous media. In Dynamics, Games and Science II 449-465. M. M. Peixoto, A. A. Pinto and D. A. Rand (Eds). Springer Proceedings in Mathematics 2. Springer, Heidelberg, 2011. | MR
.[19] Stochastic partial ordering. Ann. Probab. 6 (1978) 1044-1049. | MR | Zbl
and .[20] Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. | MR | Zbl
and .[21] Hydrodynamic behavior of symmetric zero-range processes with random rates. Stochastic Process. Appl. 84 (1999) 297-312. | MR | Zbl
.[22] Coupling the simple exclusion process. Ann. Probab. 4 (1976) 339-356. | MR | Zbl
.[23] Interacting Particle Systems. Classics in Mathematics, Reprint of first edition. Springer, Berlin, 2005. | MR | Zbl
.[24] Macroscopic stability for nonfinite range kernels. Braz. J. Probab. Stat. 24 (2010) 337-360. | MR | Zbl
, and .[25] Symmetric random walk in random environment in one dimension. Period. Math. Hungar. 45 (2002) 101-120. | MR | Zbl
.[26] Bulk diffusion in a system with site disorder. Ann. Probab. 34 (2006) 1990-2036. | MR | Zbl
.[27] Hydrodynamic limit for attractive particle systems on . Comm. Math. Phys. 140 (1991) 417-448. | MR | Zbl
.[28] Existence of hydrodynamics for the totally asymmetric simple -exclusion process. Ann. Probab. 27 (1999) 361-415. | MR | Zbl
.[29] Hydrodynamics and Platoon formation for a totally asymmetric exclusion model with particlewise disorder. J. Stat. Phys. 95 (1999) 525-567. | MR | Zbl
and .[30] Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge, 1999. Translated from the 1996 French original by I. N. Sneddon. | MR | Zbl
.[31] The existence of probability measures with given marginals. Ann. Math. Statist. 36 (1965) 423-439. | MR | Zbl
.Cited by Sources: