Dans cet article, nous considérons le modèle suivant de marches auto-évitantes : la probabilité d’une trajectoire auto-évitante entre deux points fixés d’un sous-domaine fini de est proportionnelle à . Lorsque le paramètre est supercritique (i.e. ou est la constante de connectivité du réseau), nous prouvons que la trajectoire aléatoire remplit l’espace lorsque l’on considère la limite d’échelle du modèle.
In this article, we consider the following model of self-avoiding walk: the probability of a self-avoiding trajectory between two points on the boundary of a finite subdomain of is proportional to . When is supercritical (i.e. where is the connective constant of the lattice), we show that the random trajectory becomes space-filling when taking the scaling limit.
Mots-clés : self avoiding walk, connective constant
@article{AIHPB_2014__50_2_315_0, author = {Duminil-Copin, Hugo and Kozma, Gady and Yadin, Ariel}, title = {Supercritical self-avoiding walks are space-filling}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {315--326}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP528}, mrnumber = {3189073}, zbl = {1292.60096}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP528/} }
TY - JOUR AU - Duminil-Copin, Hugo AU - Kozma, Gady AU - Yadin, Ariel TI - Supercritical self-avoiding walks are space-filling JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 315 EP - 326 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP528/ DO - 10.1214/12-AIHP528 LA - en ID - AIHPB_2014__50_2_315_0 ER -
%0 Journal Article %A Duminil-Copin, Hugo %A Kozma, Gady %A Yadin, Ariel %T Supercritical self-avoiding walks are space-filling %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 315-326 %V 50 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/12-AIHP528/ %R 10.1214/12-AIHP528 %G en %F AIHPB_2014__50_2_315_0
Duminil-Copin, Hugo; Kozma, Gady; Yadin, Ariel. Supercritical self-avoiding walks are space-filling. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 315-326. doi : 10.1214/12-AIHP528. http://archive.numdam.org/articles/10.1214/12-AIHP528/
[1] Lectures on self-avoiding-walks. In Probability and Statistical Physics in Two and More Dimensions 395-467. D. Ellwood, C. Newman, V. Sidoravicius and W. Werner (Eds). Clay Math. Proc. 15. Amer. Math. Soc., Providence, RI, 2012. Available at arXiv:1109.1549. | MR
, , and .[2] The strong interaction limit of continuous-time weakly self-avoiding walk. Preprint. Available at arXiv:1104.3731. | Zbl
, and .[3] Functional integral representations for self-avoiding walk. Probab. Surv. 6 (2009) 34-61. Available at i-journals.org. | MR | Zbl
, and .[4] Renormalisation group analysis of weakly self-avoiding walk in dimensions four and higher. In Proceedings of the International Congress of Mathematicians 2232-2257. Hindustian Book Agency, New Delhi. Available at arXiv:1003.4484. | MR | Zbl
and .[5] Self-avoiding walk in or more dimensions. Comm. Math. Phys. 97(1-2) (1985) 125-148. Available at projecteuclid.org. | MR | Zbl
and .[6] Self-avoiding walk is sub-ballistic. Preprint. Available at arXiv:1205.0401. | MR | Zbl
and .[7] The connective constant of the honeycomb lattice equals . Ann. of Math. (2) 175(3) (2012) 1653-1665. | MR | Zbl
and .[8] Principles of Polymer Chemistry. Cornell University Press, Ithaca, 1953.
.[9] Percolation. Springer, Berlin, 1999. | MR | Zbl
.[10] Further results on the rate of convergence to the connective constant of the hypercubical lattice. Quart. J. Math. Oxford Ser. (2) 13 (1962) 108-110. Available at oxfordjournals.org. | MR | Zbl
and .[11] Critical behaviour of self-avoiding walk in five or more dimensions. Bull. Amer. Math. Soc. (N.S.) 25(2) (1991) 417-423. Available at ams.org. | MR | Zbl
and .[12] Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys. 147(1) (1992) 101-136. Available at projecteuclid.org. | MR | Zbl
and .[13] The normal number of prime factors of a number . Quart. J. Pure Appl. Math. 48 (1917) 76-92. | JFM
and .[14] Ornstein-Zernike behaviour and analyticity of shapes for self-avoiding walks on . Markov Process. Related Fields 4(3) (1998) 323-350. | MR | Zbl
.[15] On the scaling limit of planar self-avoiding walk. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2 339-364. Proc. Sympos. Pure Math. 72. Amer. Math. Soc., Providence, RI, 2004. Available at arXiv:math/0204277. | MR | Zbl
, and .[16] The Self-Avoiding Walk. Probability and Its Applications. Birkhäuser, Boston, MA, 1993. | MR | Zbl
and .[17] Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians, Vol. II 1421-1451. Eur. Math. Soc., Zürich, 2006. Available at arXiv:0708.0032. | MR | Zbl
.Cité par Sources :