Si une fonctionnelle dans un problème inverse non-paramétrique peut être estimée à vitesse paramétrique, alors la vitesse minimax ne donne aucune information sur le caractère mal posé du problème. Pour avoir une borne inférieure plus précise, nous étudions l’efficacité semi-paramétrique dans le sens de Hájek–Le Cam pour l’estimation fonctionnelle dans des modèles indirects réguliers. Ces derniers sont caractérisés comme modèles que l’on peut approcher localement par un modèle linéaire de bruit blanc décrit par l’opérateur de score généralisé. Un théorème de convolution pour des modèles indirects réguliers est prouvé. Ceci s’applique à une large classe de problèmes statistiques inverses, comme montré pour les modèles prototypes du bruit blanc et de la déconvolution. Il est spécialement utile pour des modèles non-linéaires. Nous discutons en détails un modèle non-linéaire de déconvolution où un processus de Lévy est observé à basse fréquence, en obtenant une borne d’information pour l’estimation de fonctionnelles linéaires de la mesure de sauts.
If a functional in a nonparametric inverse problem can be estimated with parametric rate, then the minimax rate gives no information about the ill-posedness of the problem. To have a more precise lower bound, we study semiparametric efficiency in the sense of Hájek–Le Cam for functional estimation in regular indirect models. These are characterized as models that can be locally approximated by a linear white noise model that is described by the generalized score operator. A convolution theorem for regular indirect models is proved. This applies to a large class of statistical inverse problems, which is illustrated for the prototypical white noise and deconvolution model. It is especially useful for nonlinear models. We discuss in detail a nonlinear model of deconvolution type where a Lévy process is observed at low frequency, concluding an information bound for the estimation of linear functionals of the jump measure.
@article{AIHPB_2015__51_4_1620_0, author = {Trabs, Mathias}, title = {Information bounds for inverse problems with application to deconvolution and {L\'evy} models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1620--1650}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP627}, mrnumber = {3414460}, zbl = {1346.60063}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP627/} }
TY - JOUR AU - Trabs, Mathias TI - Information bounds for inverse problems with application to deconvolution and Lévy models JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1620 EP - 1650 VL - 51 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP627/ DO - 10.1214/14-AIHP627 LA - en ID - AIHPB_2015__51_4_1620_0 ER -
%0 Journal Article %A Trabs, Mathias %T Information bounds for inverse problems with application to deconvolution and Lévy models %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1620-1650 %V 51 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP627/ %R 10.1214/14-AIHP627 %G en %F AIHPB_2015__51_4_1620_0
Trabs, Mathias. Information bounds for inverse problems with application to deconvolution and Lévy models. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1620-1650. doi : 10.1214/14-AIHP627. http://archive.numdam.org/articles/10.1214/14-AIHP627/
[1] Spectral calibration of exponential Lévy models. Finance Stoch. 10 (4) (2006) 449–474. | MR | Zbl
and .[2] Efficient and Adaptive Estimation for Semiparametric Models. Springer, New York, 1998. | MR | Zbl
, , and .[3] Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise. Inverse Probl. 20 (6) (2004) 1773–1789. | MR | Zbl
, and .[4] Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 (6) (1996) 2384–2398. | MR | Zbl
and .[5] Decompounding: An estimation problem for Poisson random sums. Ann. Statist. 31 (4) (2003) 1054–1074. | MR | Zbl
and .[6] Nonparametric statistical inverse problems. Inverse Probl. 24 (3) 034004 (2008). | MR | Zbl
.[7] Oracle inequalities for inverse problems. Ann. Statist. 30 (3) (2002) 843–874. | MR | Zbl
, , and .[8] An infinite dimensional convolution theorem with applications to the efficient estimation of the integrated volatility. Stochastic Process. Appl. 123 (7) (2013) 2500–2521. | MR | Zbl
, and .[9] Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge, 1992. | DOI | MR | Zbl
and .[10] Regularization of Inverse Problems. Mathematics and Its Applications 375. Kluwer Academic, Dordrecht, 1996. | MR | Zbl
, and .[11] On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 (3) (1991) 1257–1272. | MR | Zbl
.[12] Uniform central limit theorems for kernel density estimators. Probab. Theory Related Fields 141 (3–4) (2008) 333–387. | MR | Zbl
and .[13] Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations. Probab. Theory Related Fields 118 (2) (2000) 169–186. | MR | Zbl
and .[14] On adaptive inverse estimation of linear functionals in Hilbert scales. Bernoulli 9 (5) (2003) 783–807. | MR | Zbl
and .[15] Une application de la topologie d’Emery: le processus information d’un modèle statistique filtré. In Séminaire de Probabilités, XXIII 448–474. Lecture Notes in Math. 1372. Springer, Berlin, 1989. | Numdam | MR | Zbl
.[16] Regularity, partial regularity, partial information process, for a filtered statistical model. Probab. Theory Related Fields 86 (3) (1990) 305–335. | MR | Zbl
.[17] Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin, 2003. | MR | Zbl
and .[18] The convolution theorem for estimating linear functionals in indirect nonparametric regression models. J. Statist. Plann. Inference 137 (3) (2007) 811–820. | MR | Zbl
, and .[19] On efficiency of indirect estimation of nonparametric regression functions. In Algebraic Methods in Statistics and Probability (Notre Dame, IN, 2000) 173–184. Contemp. Math. 287. Amer. Math. Soc., Providence, RI, 2001. | MR | Zbl
, and .[20] Asymptotically efficient estimation of linear functionals in inverse regression models. J. Nonparametr. Stat. 17 (7) (2005) 819–831. | MR | Zbl
, and .[21] Gaussian Measures in Banach Spaces. Lecture Notes in Math. 463. Springer, Berlin, 1975. | MR | Zbl
.[22] Limits of experiments. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. I: Theory of Statistics 245–261. Univ. California Press, Berkeley, CA, 1972. | MR | Zbl
.[23] Estimates of Hellinger integrals of infinitely divisible distributions. Kybernetika (Prague) 23 (3) (1987) 227–238. | MR | Zbl
.[24] Deconvolution Problems in Nonparametric Statistics. Lecture Notes in Statist. Springer, Berlin, 2009. | DOI | MR | Zbl
.[25] Error bounds for Tikhonov regularization in Hilbert scales. Appl. Anal. 18 (1–2) (1984) 29–37. | MR | Zbl
.[26] Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15 (1) (2009) 223–248. | MR | Zbl
and .[27] A Donsker theorem for Lévy measures. J. Funct. Anal. 263 (10) (2012) 3306–3332. | MR | Zbl
and .[28] Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 (6) (1996) 2399–2430. | MR | Zbl
.[29] Testing the characteristics of a Lévy process. Stochastic Process. Appl. 123 (7) (2013) 2808–2828. | MR | Zbl
.[30] Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
.[31] A uniform central limit theorem and efficiency for deconvolution estimators. Electron. J. Stat. 6 (2012) 2486–2518. | DOI | MR | Zbl
and .[32] Calibration of self-decomposable Lévy models. Bernoulli 20 (1) (2014) 109–140. | MR | Zbl
.[33] Statistical Estimation in Large Parameter Spaces. CWI Tract 44. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1988. | MR | Zbl
.[34] On differentiable functionals. Ann. Statist. 19 (1) (1991) 178–204. | MR | Zbl
.[35] Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 1998. | MR | Zbl
.[36] Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer, New York, 1996. | DOI | MR | Zbl
and .[37] Asymptotic efficiency of inverse estimators. Teor. Veroyatn. Primen. 44 (4) (1999) 826–844. Translation in Theory Probab. Appl. 44 (4) 722–738. | MR | Zbl
, and .[38] Mathematische Statistik. I: Parametrische Verfahren bei festem Stichprobenumfang. B. G. Teubner, Stuttgart, 1985. | DOI | MR | Zbl
.Cité par Sources :