@article{ASENS_1983_4_16_3_345_0, author = {Przytycki, Feliks}, title = {Ergodicity of toral linked twist mappings}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {345--354}, publisher = {Elsevier}, volume = {Ser. 4, 16}, number = {3}, year = {1983}, doi = {10.24033/asens.1451}, mrnumber = {85k:58051}, zbl = {0531.58031}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1451/} }
TY - JOUR AU - Przytycki, Feliks TI - Ergodicity of toral linked twist mappings JO - Annales scientifiques de l'École Normale Supérieure PY - 1983 SP - 345 EP - 354 VL - 16 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1451/ DO - 10.24033/asens.1451 LA - en ID - ASENS_1983_4_16_3_345_0 ER -
Przytycki, Feliks. Ergodicity of toral linked twist mappings. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 16 (1983) no. 3, pp. 345-354. doi : 10.24033/asens.1451. http://archive.numdam.org/articles/10.24033/asens.1451/
[1] On Axiom A Diffeomorphisms (Proc. C.B.M.S. Regional Conf. Ser. Math., N° 35, Amer. Math. Soc., Providence R. I.). | MR | Zbl
,[2] Ergodicity of Linked Twist Mappings (Global Theory of Dynamical Systems, Proc., Northwestern 1979, Lecture Notes in Math., n° 819, pp. 35-49). | MR | Zbl
and ,[3] Linked Twist Mappings are Almost Anosov (Global theory of Dynamical Systems, Proc. Northwestern 1979, Lecture Notes in Math., n° 819, pp. 121-145). | MR | Zbl
,[4] Chain Transitivity and the Domain of Influence of an Invariant Set (Lecture Notes in Math., n° 668, pp. 95-102). | MR | Zbl
,[5] Theory of Dynamical Systems and General Transformation Groups with Invariant Measure (I togi Nauki i Tekhniki, Matematicheskii Analiz, Vol. 13, 1975, pp. 129-262 (In Russian). English translation : J. of Soviet Math., Vol. 7, N° 6, 1977, pp. 974-1065). | Zbl
, and ,[6] Invariant Manifolds for Smooth Maps with Singularities I. Existence, II. Absolute Continuity, preprint, The Pesin Entropy Formula for Smoth Maps with Singularities, preprint.
and ,[7] Linked Twist Mappings Have the K-Property (Nonlinear Dynamics, International Conference, New York 1979, pp. 66-76). | Zbl
,[8] A Model Problem with the Coexistence of Stochastic and Integrable Behaviour (Comm. Math. Phys., Vol. 80, N° 4, 1981, pp. 453-464). | MR | Zbl
,[9] Lyapunov Characteristic Exponents and Smooth Ergodic Theory (Uspehi Mat. Nauk., Vol. 32, n° 4 (196), 1977, pp. 55-112. English translation : Russian Math. Surveys, Vol. 32, No. 4, 1977, pp. 55-114). | Zbl
,[10] On the Geometry and Dynamics of Diffeomorphisms of Surfaces, I, preprint.
,[11] Linked Twist Mappings : Ergodicity, preprint I.H.E.S., February 1981.
,Cited by Sources: