@article{ASENS_1985_4_18_2_345_0, author = {Brion, M.}, title = {Repr\'esentations exceptionnelles des groupes semi-simples}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {345--387}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 18}, number = {2}, year = {1985}, doi = {10.24033/asens.1492}, mrnumber = {87e:14043}, zbl = {0588.22010}, language = {fr}, url = {http://archive.numdam.org/articles/10.24033/asens.1492/} }
TY - JOUR AU - Brion, M. TI - Représentations exceptionnelles des groupes semi-simples JO - Annales scientifiques de l'École Normale Supérieure PY - 1985 SP - 345 EP - 387 VL - 18 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1492/ DO - 10.24033/asens.1492 LA - fr ID - ASENS_1985_4_18_2_345_0 ER -
%0 Journal Article %A Brion, M. %T Représentations exceptionnelles des groupes semi-simples %J Annales scientifiques de l'École Normale Supérieure %D 1985 %P 345-387 %V 18 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1492/ %R 10.24033/asens.1492 %G fr %F ASENS_1985_4_18_2_345_0
Brion, M. Représentations exceptionnelles des groupes semi-simples. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 18 (1985) no. 2, pp. 345-387. doi : 10.24033/asens.1492. http://archive.numdam.org/articles/10.24033/asens.1492/
[1] Representations of Simple Lie Groups with Regular Rings of Invariants (Invent. Math., vol. 49, 1978, p. 167-191). | MR | Zbl
,[2] Representations of Simple Lie Groups with a Free Module of Covariants (invent. Math., vol. 50, 1978, p. 1-12). | MR | Zbl
,[3] Some Remarks on Nilpotent Orbits (J. Alg., vol. 64, 1980, p. 190-213). | MR | Zbl
,[4] Closures of Conjugacy Classes of Matrices are Normal (Invent. Math., vol. 53, 1979, p. 227-247). | MR | Zbl
et ,[5] Sur certaines représentations des groupes semi-simples (C.R. Acad. Sc., t. 296, série I, 1983, p. 5-6). | MR | Zbl
,[6] Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple (Ann. Inst. Fourier, t. 33, fasc. I, 1983, p. 1-27). | Numdam | MR | Zbl
,[7] On Picard Groups of Some Algebraic Fiber Spaces (J. Pure Appl. Algebra, vol. 3, 1973, p. 269-280). | MR | Zbl
et ,[8] Toroidal Embeddings (Springer L.N., n° 339). | MR | Zbl
,[9] Groupes et algèbres de Lie, chap. VII et VIII, Hermann.
,[10] The Theory of Group Characters, Oxford University Press.
,[11] Symmetric Functions and Hall Polynomials, Oxford University Press.
,[12] Products and Plethysms of Characters with Orthogonal, Symplectic and Symmetric Groups (Can. J. Math., vol. 10, 1958, p. 17-32). | MR | Zbl
,[13] Cesammelte Abhandlungen, Band III.
,[14] Spinor representations (Lecture Notes in Physics, n° 50) ; Group Theoretical Methods in Physics, Springer-Verlag. | MR | Zbl
,[15] On the Concomitants of Spin Tensors (Proc. London Math. Soc., (2), vol. 49, 1947, p. 307-327). | MR | Zbl
,[16] Eine Klassifikation bestimmter Untergruppen kompakter Liegruppen (Comm. in Algebra, vol. 3, 1975, p. 691-737). | MR | Zbl
,[17] A System of Quadrics Describing the Orbit of the Highest Weight Vector (Proc. A.M.S., vol. 84, n° 4, avril 1982). | MR | Zbl
,[18] On a Class of Quasihomogeneous Varieties (Math. U.S.S.R. Izv., vol. 6, 1972, p. 743-748). | MR | Zbl
et ,[19] Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen (Comm. Math. Helv., vol. 54, 1979, p. 61-104). | MR | Zbl
et ,[20] Some Irreducible Representations of Exceptional Algebraic Groups (Amer. J. Maths., vol. 93, 1971, p. 75-106). | MR | Zbl
,[21] Les nombres de Tamagawa de certains groupes exceptionnels (Bull. Soc. Math. Fr., t. 94, 1966, p. 97-140). | Numdam | MR | Zbl
,[22] A Classification of Spinors up to Dimension Twelve (Amer. J. Math., vol. 92, 1970, p. 997-1028). | MR | Zbl
,[23] Images of Homogeneous Vector Bundles and Varieties of Complexes (Bull. Amer. Math. Soc., vol. 81, 1975, n° 5, p. 900-901). | MR | Zbl
,[24] On the Variety of Complexes (Adv. in Maths, vol. 41, 1981, n° 1, p. 57-77). | MR | Zbl
et ,[25] Sur la théorie des invariants des groupes classiques (Ann. Inst. Fourier, vol. 26, n° 1, 1976, p. 1-31). | Numdam | MR | Zbl
,Cité par Sources :