Représentations exceptionnelles des groupes semi-simples
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 18 (1985) no. 2, pp. 345-387.
@article{ASENS_1985_4_18_2_345_0,
     author = {Brion, M.},
     title = {Repr\'esentations exceptionnelles des groupes semi-simples},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {345--387},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 18},
     number = {2},
     year = {1985},
     doi = {10.24033/asens.1492},
     mrnumber = {87e:14043},
     zbl = {0588.22010},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/asens.1492/}
}
TY  - JOUR
AU  - Brion, M.
TI  - Représentations exceptionnelles des groupes semi-simples
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1985
SP  - 345
EP  - 387
VL  - 18
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1492/
DO  - 10.24033/asens.1492
LA  - fr
ID  - ASENS_1985_4_18_2_345_0
ER  - 
%0 Journal Article
%A Brion, M.
%T Représentations exceptionnelles des groupes semi-simples
%J Annales scientifiques de l'École Normale Supérieure
%D 1985
%P 345-387
%V 18
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1492/
%R 10.24033/asens.1492
%G fr
%F ASENS_1985_4_18_2_345_0
Brion, M. Représentations exceptionnelles des groupes semi-simples. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 18 (1985) no. 2, pp. 345-387. doi : 10.24033/asens.1492. https://www.numdam.org/articles/10.24033/asens.1492/

[1] G. Schwarz, Representations of Simple Lie Groups with Regular Rings of Invariants (Invent. Math., vol. 49, 1978, p. 167-191). | MR | Zbl

[2] G. Schwarz, Representations of Simple Lie Groups with a Free Module of Covariants (invent. Math., vol. 50, 1978, p. 1-12). | MR | Zbl

[3] V. Kač, Some Remarks on Nilpotent Orbits (J. Alg., vol. 64, 1980, p. 190-213). | MR | Zbl

[4] H. Kraft et C. Procesi, Closures of Conjugacy Classes of Matrices are Normal (Invent. Math., vol. 53, 1979, p. 227-247). | MR | Zbl

[5] M. Brion, Sur certaines représentations des groupes semi-simples (C.R. Acad. Sc., t. 296, série I, 1983, p. 5-6). | MR | Zbl

[6] M. Brion, Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple (Ann. Inst. Fourier, t. 33, fasc. I, 1983, p. 1-27). | Numdam | MR | Zbl

[7] R. Fossum et B. Iversen, On Picard Groups of Some Algebraic Fiber Spaces (J. Pure Appl. Algebra, vol. 3, 1973, p. 269-280). | MR | Zbl

[8] G. Kempf, Toroidal Embeddings (Springer L.N., n° 339). | MR | Zbl

[9] N. Bourbaki, Groupes et algèbres de Lie, chap. VII et VIII, Hermann.

[10] D. E. Littlewood, The Theory of Group Characters, Oxford University Press.

[11] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press.

[12] D. E. Littlewood, Products and Plethysms of Characters with Orthogonal, Symplectic and Symmetric Groups (Can. J. Math., vol. 10, 1958, p. 17-32). | MR | Zbl

[13] H. Weyl, Cesammelte Abhandlungen, Band III.

[14] R. C. King, Spinor representations (Lecture Notes in Physics, n° 50) ; Group Theoretical Methods in Physics, Springer-Verlag. | MR | Zbl

[15] D. E. Littlewood, On the Concomitants of Spin Tensors (Proc. London Math. Soc., (2), vol. 49, 1947, p. 307-327). | MR | Zbl

[16] M. Krämer, Eine Klassifikation bestimmter Untergruppen kompakter Liegruppen (Comm. in Algebra, vol. 3, 1975, p. 691-737). | MR | Zbl

[17] W. Lichtenstein, A System of Quadrics Describing the Orbit of the Highest Weight Vector (Proc. A.M.S., vol. 84, n° 4, avril 1982). | MR | Zbl

[18] E. Vinberg et V. Popov, On a Class of Quasihomogeneous Varieties (Math. U.S.S.R. Izv., vol. 6, 1972, p. 743-748). | MR | Zbl

[19] W. Borho et H. Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen (Comm. Math. Helv., vol. 54, 1979, p. 61-104). | MR | Zbl

[20] S. J. Haris, Some Irreducible Representations of Exceptional Algebraic Groups (Amer. J. Maths., vol. 93, 1971, p. 75-106). | MR | Zbl

[21] J. G. Mars, Les nombres de Tamagawa de certains groupes exceptionnels (Bull. Soc. Math. Fr., t. 94, 1966, p. 97-140). | Numdam | MR | Zbl

[22] J. I. Igusa, A Classification of Spinors up to Dimension Twelve (Amer. J. Math., vol. 92, 1970, p. 997-1028). | MR | Zbl

[23] G. Kempf, Images of Homogeneous Vector Bundles and Varieties of Complexes (Bull. Amer. Math. Soc., vol. 81, 1975, n° 5, p. 900-901). | MR | Zbl

[24] C. De Concini et E. Strickland, On the Variety of Complexes (Adv. in Maths, vol. 41, 1981, n° 1, p. 57-77). | MR | Zbl

[25] Th. Vust, Sur la théorie des invariants des groupes classiques (Ann. Inst. Fourier, vol. 26, n° 1, 1976, p. 1-31). | Numdam | MR | Zbl

  • Zhang, Robin Modular Gelfand Pairs and Multiplicity-Free Representations, International Mathematics Research Notices, Volume 2024 (2024) no. 7, p. 5490 | DOI:10.1093/imrn/rnad194
  • Liebeck, Martin; Seitz, Gary; Testerman, Donna Multiplicity-free Representations of Algebraic Groups, Memoirs of the American Mathematical Society, Volume 294 (2024) no. 1466 | DOI:10.1090/memo/1466
  • AVDEEV, ROMAN; PETUKHOV, ALEXEY SPHERICAL ACTIONS ON ISOTROPIC FLAG VARIETIES AND RELATED BRANCHING RULES, Transformation Groups, Volume 26 (2021) no. 3, p. 719 | DOI:10.1007/s00031-020-09593-1
  • Shmelkin, D.A. Semi-invariants of gentle algebras by deformation method and sphericity, Journal of Algebra, Volume 528 (2019), p. 285 | DOI:10.1016/j.jalgebra.2019.03.010
  • Pezzini, Guido; Van Steirteghem, Bart Combinatorial characterization of the weight monoids of smooth affine spherical varieties, Transactions of the American Mathematical Society, Volume 372 (2019) no. 4, p. 2875 | DOI:10.1090/tran/7785
  • van Pruijssen, Maarten Multiplicity Free Induced Representations and Orthogonal Polynomials, International Mathematics Research Notices (2017), p. rnw295 | DOI:10.1093/imrn/rnw295
  • Nang, Philibert D-modules on representations of Capelli type, Journal of Algebra, Volume 479 (2017), p. 380 | DOI:10.1016/j.jalgebra.2016.12.029
  • Gagliardi, Giuliano A combinatorial smoothness criterion for spherical varieties, Manuscripta Mathematica, Volume 146 (2015) no. 3-4, p. 445 | DOI:10.1007/s00229-014-0713-7
  • Terpereau, Ronan Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups, Mathematische Zeitschrift, Volume 277 (2014) no. 1-2, p. 339 | DOI:10.1007/s00209-013-1259-1
  • Rubenthaler, Hubert Invariant differential operators on a class of multiplicity-free spaces, Pacific Journal of Mathematics, Volume 270 (2014) no. 2, p. 473 | DOI:10.2140/pjm.2014.270.473
  • Kraft, Hanspeter; Schwarz, Gerald W. Representations with a reduced null cone, Symmetry: Representation Theory and Its Applications, Volume 257 (2014), p. 419 | DOI:10.1007/978-1-4939-1590-3_15
  • Sevostyanova, V. V. The invariant field of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra, Journal of Mathematical Sciences, Volume 171 (2010) no. 3, p. 400 | DOI:10.1007/s10958-010-0144-2
  • Benson, Chal; Ratcliff, Gail The Space of Bounded Spherical Functions on the Free 2-Step Nilpotent Lie Group, Transformation Groups, Volume 13 (2008) no. 2, p. 243 | DOI:10.1007/s00031-008-9016-y
  • Brion, Michel The total coordinate ring of a wonderful variety, Journal of Algebra, Volume 313 (2007) no. 1, p. 61 | DOI:10.1016/j.jalgebra.2006.12.022
  • Landsberg, J.M.; Manivel, L. The sextonions and E712, Advances in Mathematics, Volume 201 (2006) no. 1, p. 143 | DOI:10.1016/j.aim.2005.02.001
  • Landsberg, J.M; Manivel, L The Projective Geometry of Freudenthal's Magic Square, Journal of Algebra, Volume 239 (2001) no. 2, p. 477 | DOI:10.1006/jabr.2000.8697
  • Vinberg, E B Commutative homogeneous spaces and co-isotropic symplectic actions, Russian Mathematical Surveys, Volume 56 (2001) no. 1, p. 1 | DOI:10.1070/rm2001v056n01abeh000356
  • Винберг, Эрнест Борисович; Vinberg, Ernest Borisovich Коммутативные однородные пространства и коизотропные симплектические действия, Успехи математических наук, Volume 56 (2001) no. 1, p. 3 | DOI:10.4213/rm356
  • Panyushev, D. I. Complexity and rank of actions in invariant theory, Journal of Mathematical Sciences, Volume 95 (1999) no. 1, p. 1925 | DOI:10.1007/bf02169155
  • Broer, Abraham Normal Nilpotent Varieties inF4, Journal of Algebra, Volume 207 (1998) no. 2, p. 427 | DOI:10.1006/jabr.1998.7458
  • Cohen, Arjeh; Cooperstein, Bruce Lie incidence systems from projective varieties, Proceedings of the American Mathematical Society, Volume 126 (1998) no. 7, p. 2095 | DOI:10.1090/s0002-9939-98-04223-3
  • Knop, Friedrich Some remarks on multiplicity free spaces, Representation Theories and Algebraic Geometry (1998), p. 301 | DOI:10.1007/978-94-015-9131-7_7
  • Cohen, Arjeh M. Point-Line Spaces Related to Buildings, Handbook of Incidence Geometry (1995), p. 647 | DOI:10.1016/b978-044488355-1/50014-1
  • Panyushev, Dmitri I. A restriction theorem and the Poincare series forU-invariants, Mathematische Annalen, Volume 301 (1995) no. 1, p. 655 | DOI:10.1007/bf01446653
  • Cohen, Arjeh M.; Cushman, Richard H. Gröbner Bases and Standard Monomial Theory, Computational Algebraic Geometry (1993), p. 41 | DOI:10.1007/978-1-4612-2752-6_4

Cité par 25 documents. Sources : Crossref