Dans cet article, nous montrons qu'il existe une métrique hermitienne continue et canonique sur le fibré en droites CM au-dessus de l'espace de modules des variétés de Kähler-Einstein régularisables. La courbure de Chern de cette métrique hermitienne est le courant de Weil-Petersson, qui existe en tant que (1,1)-courant fermé positif sur , et étend le courant canonique de Weil-Petersson défini sur l'espace de modules des variétés de Kähler-Einstein Fano régulières. Nous montrons aussi, en guise d'application de notre résultat, que le fibré des lignes CM est nef et big sur , et que sa restriction à est ample.
In this paper, we prove that there is a canonical continuous Hermitian metric on the CM line bundle over the proper moduli space of smoothable Kähler-Einstein Fano varieties. The Chern curvature of this Hermitian metric is the Weil-Petersson current, which exists as a closed positive (1,1)-current on and extends the canonical Weil-Petersson current on the moduli space of smooth Kähler-Einstein Fano manifolds. As a consequence, we show that the CM line bundle is nef and big on and its restriction on is ample.
DOI : 10.24033/asens.2365
Keywords: Kähler-Einstein metric, Fano varieties, moduli space, quasi-projectivity, Weil-Petersson current.
Mot clés : Métrique de Kähler-Einstein, variétés de Fano, espace de modules, quasi-projectivité, courant de Weil-Petersson.
@article{ASENS_2018__51_3_739_0, author = {Li, Chi and Wang, Xiaowei and Xu, Chenyang}, title = {Quasi-projectivity of the moduli space of smooth {K\"ahler-Einstein} {Fano} manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {739--772}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {3}, year = {2018}, doi = {10.24033/asens.2365}, mrnumber = {3831036}, zbl = {1421.32033}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2365/} }
TY - JOUR AU - Li, Chi AU - Wang, Xiaowei AU - Xu, Chenyang TI - Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 739 EP - 772 VL - 51 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2365/ DO - 10.24033/asens.2365 LA - en ID - ASENS_2018__51_3_739_0 ER -
%0 Journal Article %A Li, Chi %A Wang, Xiaowei %A Xu, Chenyang %T Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 739-772 %V 51 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2365/ %R 10.24033/asens.2365 %G en %F ASENS_2018__51_3_739_0
Li, Chi; Wang, Xiaowei; Xu, Chenyang. Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 739-772. doi : 10.24033/asens.2365. http://archive.numdam.org/articles/10.24033/asens.2365/
Log minimal model program for the moduli space of stable curves: the second flip (preprint arXiv:1308.1148 )
Weak semistable reduction in characteristic 0, Invent. math., Volume 139 (2000), pp. 241-273 | DOI | MR | Zbl
Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble), Volume 63, p. 2349-2042 | DOI | Numdam | MR | Zbl
Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties (preprint arXiv:1111.7158, to appear in J. reine angew. Math ) | MR
K-polystability of -Fano varieties admitting Kähler-Einstein metrics, Anal. PDE, Volume 6 (2013), pp. 131-180 | Zbl
personal communication (2013)
Relative Kähler-Ricci flows and their quantization, Invent. math., Volume 203 (2016), pp. 973-1025 | MR | Zbl
Kähler-Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal., Volume 24 (2014), pp. 1683-1730 | DOI | MR | Zbl
Analytic torsion and holomorphic determinant bundles I, Commun. Math. Phys., Volume 115 (1988), pp. 49-78 | DOI | MR | Zbl
The augmented base locus of real divisors over arbitrary fields, Math. Ann., Volume 368 (2017), pp. 905-921 | DOI | MR | Zbl
Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. polytech. Math., Volume 4 (2017), pp. 87-139 | DOI | MR | Zbl
The Dirichlet problem for a complex Monge-Ampère equation, Invent. math., Volume 37 (1976), pp. 1-44 | DOI | MR | Zbl
On the structure of spaces with Ricci curvature bounded below I, J. Diff. Geom., Volume 45 (1997), pp. 1-75 | MR | Zbl
Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. no. 28, pp. 183-197 (ISSN: 0003-486X) | MR | Zbl
Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than , J. Amer. Math. Soc. no. 28, pp. 199-234 (ISSN: 0003-486X) | MR | Zbl
Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches and completion of the main proof., J. Amer. Math. Soc. no. 28, pp. 235-278 (ISSN: 0003-486X) | MR | Zbl
Le déterminant de la cohomolgie, Current Trends in Arithmetrical Algebraic Geometry, Contemp. Math., Volume 67 (1987), pp. 93-177 | DOI | MR | Zbl
Complex Analytic and Differential Geometry (2012) (preprint http://www.fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf ) | Numdam | Zbl
Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. math., Volume 97 (1989), pp. 53-94 | DOI | MR | Zbl
Algebraic families of constant scalar curvature Kähler metrics (preprint arXiv:1503.05174 ) | MR
Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001), pp. 479-522 | MR | Zbl
Scalar curvature and stability of toric varieties, J. Differential Geom., Volume 62 (2002), pp. 289-349 | MR | Zbl
Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Volume 7 (2008), pp. 29-75 Adv. Lect. Math. (ALM), Handbook of geometric analysis. No. 1, Int. Press, Somerville, MA | MR | Zbl
Stability, birational transformations and the Kähler-Einstein problem, Surveys in Differential Geometry, Volume 17 (2012), pp. 203-228 | DOI | MR | Zbl
Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math., Volume 213 (2014), pp. 63-106 (ISSN: 0073-8301) | DOI | MR | Zbl
Kähler-Einstein metrics and the generalized Futaki invariant, Invent. math., Volume 110 (1992), pp. 315-335 | DOI | MR | Zbl
The Levi problem on complex spaces with singularities, Math. Ann., Volume 248 (1980), pp. 47-72 | DOI | MR | Zbl
The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math., Volume 26 (1990), pp. 101-183 | DOI | MR | Zbl
Semipositivity theorems for moduli problems, Ann. of Math., Volume 187 (2018), pp. 639-665 | DOI | MR | Zbl
An obstruction to the existence of Einstein-Kähler metrics, Inventiones Mathematicae (1983), pp. 437-443 | DOI | MR | Zbl
Kähler-Einstein metrics and integral invariants, Lecture Notes in Mathematics, Volume 1314 (1990) | MR | Zbl
, Encyclopaedia of Math. Sciences, 74, Springer, Berlin, 1994 | MR
Plurisubharmonische Funktionen Mengenräumen, Math. Z., Volume 65 (1956), pp. 175-194 | DOI | MR | Zbl
Über Modifikationen und exzeptionelle analytische Mengen, Math. Annalen, Volume 146 (1962), pp. 331-368 | DOI | MR | Zbl
Rational connectedness and boundedness of Fano manifolds, J. Differential Geom., Volume 36 (1992), pp. 765-779 | MR | Zbl
Non-quasi-projective moduli spaces, Ann. Math., Volume 164 (2006), pp. 1077-1096 | DOI | MR | Zbl
Moduli of varieties of general type, Handbook of moduli. Vol. II (Adv. Lect. Math. (ALM)), Volume 25 (2013), pp. 131-157 | MR | Zbl
Projectivity of complete moduli, J. Differ. Geom., Volume 32 (1990), pp. 235-268 | MR | Zbl
Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds, J. reine angew. Math, Volume 733 (2017), pp. 55-85 | DOI | MR | Zbl
Orbifold regularity of weak Kähler-Einstein metrics (preprint arXiv:1505.01925 ) | MR
On proper moduli space of smoothable Kähler-Einstein Fano varieties (preprint arXiv:1411.0761 ) | MR
Orbifolds and analytic torsions, Tran. Am. Math. Soc., Volume 357 (2005), pp. 2205-2233 | DOI | MR | Zbl
The continuity of Deligne's pairing, Internat. Math. Res. Notices, Volume 19 (1999), pp. 1057-1066 | DOI | MR | Zbl
Stable base loci of linear series, Math. Ann., Volume 318 (2000), pp. 837-847 (ISSN: 0025-5831) | DOI | MR | Zbl
On the moduli of Kähler-Einstein Fano manifolds, Proceedings of Kinosaki algebraic geometry symposium 2013 (preprint arXiv:1211.4833 )
Compact moduli space of Kähler-Einstein Fano varieties, Publ. Res. Inst. Math. Sci., Volume 51 (2015), pp. 549-565 | DOI | MR | Zbl
Compact Moduli Spaces of Del Pezzo Surfaces and Kähler-Einstein metrics, J. Diff. Geom., Volume 102 (2016), pp. 127-172 | MR | Zbl
An example of an asymptotically Chow unstable manifold with constant scalar curvature, Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 1265-1287 | DOI | Numdam | MR | Zbl
Deligne pairing and the Knudsen-Mumford expansion, J. Differential Geom., Volume 78 (2008), pp. 475-496 | MR | Zbl
Scalar Curvature, moment maps, and the Deligne pairing, American Journal of Mathematics, Volume 126 (2004), pp. 693-712 | DOI | MR | Zbl
CM stability and the generalized Futaki invariant II, Astérisque, Volume 328 (2009), pp. 339-354 | Numdam | MR | Zbl
Critères de platitude et de projectivité. Techniques de “platification” d'un module, Invent. math., Volume 13 (1971), pp. 1-89 (ISSN: 0020-9910) | DOI | MR | Zbl
Positivity of relative canonical bundles and applications, Invent. math., Volume 190 (2012), pp. 1-56 | DOI | MR | Zbl
Erratum: Positivity of relative canonical bundles and applications, Invent. math., Volume 192 (2013), pp. 253-255 | DOI | MR | Zbl
Existence and deformations of Kähler-Einstein metrics on smoothable -Fano varieties, Duke Math. J., Volume 165 | MR | Zbl
Quasi-projectivity of moduli spaces of polarized varieties, Ann. Math., Volume 159 (2004), pp. 597-639 | DOI | MR | Zbl
The Kähler-Ricci flow and K-polystability, Amer. J. Math., Volume 132 (2010), pp. 1077-1090 | DOI | MR | Zbl
Bott-Chern forms and geometric stability, Discret Contin. Dynam. Systems, Volume 6 (2000), pp. 211-220 | DOI | MR | Zbl
Existence of Einstein metrics on Fano manifolds, Metric and Differential Geometry,, Volume 297 (2012), pp. 119-159 | DOI | MR | Zbl
Partial -estimate for Kähler-Einstein metrics, Commun. Math. Stat., Volume 1 (2013), pp. 105-113 | DOI | MR | Zbl
K-stability and Kähler-Einstein metrics, Comm. Pure App. Math., Volume 68 (2015), pp. 1085-1156 | DOI | MR | Zbl
Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical Aspects of String Theory (ed. S.-T. Yau) (1987), pp. 629-646 | DOI | MR | Zbl
On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. math., Volume 101 (1990), pp. 101-172 | DOI | MR | Zbl
Kähler-Einstein metrics with positive scalar curvature, Invent. math., Volume 130 (1997), pp. 1-39 | DOI | MR | Zbl
Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989), pp. 13-52 | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 30, Springer, Berlin, 1995 | MR | Zbl
On the singularity of Quillen metrics, Math. Ann., Volume 337 (2007), pp. 61-89 | DOI | MR | Zbl
Heights and reductions of semi-stable varieties, Compos. Math., Volume 104 (1996), pp. 77-105 | Numdam | MR | Zbl
Cité par Sources :