When is a Riesz distribution a complex measure?
Bulletin de la Société Mathématique de France, Volume 139 (2011) no. 4, pp. 519-534.

Let α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α. I give an elementary proof of the necessary and sufficient condition for α to be a locally finite complex measure (= complex Radon measure).

Soit α la distribution de Riesz sur une algèbre de Jordan euclidienne simple, paramétrisée par α. Je donne une démonstration élémentaire de la condition nécessaire et suffisante pour que α soit une mesure complexe localement finie (= mesure de Radon complexe).

DOI: 10.24033/bsmf.2617
Classification: 43A85, 17A15, 17C99, 28C10, 44A10, 46F10, 47G10, 60E05, 62H05
Keywords: Riesz distribution, Jordan algebra, symmetric cone, Gindikin's theorem, Wallach set, tempered distribution, positive measure, Radon measure, relatively invariant measure, Laplace transform
Mot clés : distribution de Riesz, algèbre de Jordan, cône symétrique, théorème de Gindikin, ensemble de Wallach, distribution tempérée, mesure positive, mesure de Radon, mesure relativement invariante, transformée de Laplace
@article{BSMF_2011__139_4_519_0,
     author = {D.~Sokal, Alan},
     title = {When is a {Riesz} distribution a complex measure?},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {519--534},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {139},
     number = {4},
     year = {2011},
     doi = {10.24033/bsmf.2617},
     mrnumber = {2869303},
     zbl = {1263.43003},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/bsmf.2617/}
}
TY  - JOUR
AU  - D. Sokal, Alan
TI  - When is a Riesz distribution a complex measure?
JO  - Bulletin de la Société Mathématique de France
PY  - 2011
SP  - 519
EP  - 534
VL  - 139
IS  - 4
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/bsmf.2617/
DO  - 10.24033/bsmf.2617
LA  - en
ID  - BSMF_2011__139_4_519_0
ER  - 
%0 Journal Article
%A D. Sokal, Alan
%T When is a Riesz distribution a complex measure?
%J Bulletin de la Société Mathématique de France
%D 2011
%P 519-534
%V 139
%N 4
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/bsmf.2617/
%R 10.24033/bsmf.2617
%G en
%F BSMF_2011__139_4_519_0
D. Sokal, Alan. When is a Riesz distribution a complex measure?. Bulletin de la Société Mathématique de France, Volume 139 (2011) no. 4, pp. 519-534. doi : 10.24033/bsmf.2617. http://archive.numdam.org/articles/10.24033/bsmf.2617/

[1] M. F. Atiyah - « Resolution of singularities and division of distributions », Comm. Pure Appl. Math. 23 (1970), p. 145-150. | MR | Zbl

[2] I. N. Bernšteĭn - « Analytic continuation of generalized functions with respect to a parameter », Funkcional. Anal. i Priložen. 6 (1972), p. 26-40; English translation: Funct. Anal. Appl. 6 (1972), p. 273-285. | MR | Zbl

[3] I. N. Bernšteĭn & S. I. GelʼFand - « Meromorphy of the function P λ », Funkcional. Anal. i Priložen. 3 (1969), p. 84-85; English translation: Funct. Anal. Appl. 3 (1969), p. 68-69. | MR

[4] J.-E. Björk - Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., 1979. | MR | Zbl

[5] J. Bochnak & J. Siciak - « Analytic functions in topological vector spaces », Studia Math. 39 (1971), p. 77-112. | MR | Zbl

[6] M. Bonnefoy-Casalis - « Familles exponentielles naturelles invariantes par un groupe », thèse de doctorat, Université Paul Sabatier de Toulouse, 1990. | Zbl

[7] N. Bourbaki - Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, 1963. | MR | Zbl

[8] S. Caracciolo, A. Sportiello & A. D. Sokal - « Combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians », preprint arXiv:1105.6270. | MR | Zbl

[9] M. Casalis & G. Letac - « Characterization of the Jørgensen set in generalized linear models », Test 3 (1994), p. 145-162. | MR | Zbl

[10] J. Faraut - « Formule du binôme généralisée », in Harmonic analysis (Luxembourg, 1987), Lecture Notes in Math., vol. 1359, Springer, 1988, p. 170-180. | MR | Zbl

[11] J. Faraut & A. Korányi - « Function spaces and reproducing kernels on bounded symmetric domains », J. Funct. Anal. 88 (1990), p. 64-89. | MR | Zbl

[12] -, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 1994. | MR

[13] S. G. Gindikin - « Invariant generalized functions in homogeneous domains », Funkcional. Anal. i Priložen. 9 (1975), p. 56-58; English translation: Funct. Anal. Appl. 9 (1975), p. 50-52. | MR | Zbl

[14] K.-G. Grosse-Erdmann - « A weak criterion for vector-valued holomorphy », Math. Proc. Cambridge Philos. Soc. 136 (2004), p. 399-411. | MR | Zbl

[15] A. Grothendieck - « Sur certains espaces de fonctions holomorphes. I », J. reine angew. Math. 192 (1953), p. 35-64. | MR | Zbl

[16] E. K. Haviland - « On the momentum problem for distribution functions in more than one dimension », Amer. J. Math. 57 (1935), p. 562-568. | MR | Zbl

[17] -, « On the momentum problem for distribution functions in more than one dimension. II », Amer. J. Math. 58 (1936), p. 164-168. | JFM | MR | Zbl

[18] J. Hilgert & K.-H. Neeb - « Vector valued Riesz distributions on Euclidian Jordan algebras », J. Geom. Anal. 11 (2001), p. 43-75. | MR | Zbl

[19] L. Hörmander - The analysis of linear partial differential operators. I, second éd., Springer Study Edition, Springer, 1990. | MR | Zbl

[20] H. Ishi - « Positive Riesz distributions on homogeneous cones », J. Math. Soc. Japan 52 (2000), p. 161-186. | MR | Zbl

[21] M. Lassalle - « Algèbre de Jordan et ensemble de Wallach », Invent. Math. 89 (1987), p. 375-393. | MR | Zbl

[22] G. Letac & H. Massam - « The noncentral Wishart as an exponential family, and its moments », J. Multivariate Anal. 99 (2008), p. 1393-1417. | MR | Zbl

[23] M. Marshall - Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, Amer. Math. Soc., 2008. | MR | Zbl

[24] L. Nachbin - The Haar integral, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. | MR | Zbl

[25] S. D. Peddada & D. S. P. Richards - « Proof of a conjecture of M. L. Eaton on the characteristic function of the Wishart distribution », Ann. Probab. 19 (1991), p. 868-874; acknowledgment of priority 20 (1992), p. 1107. | MR | Zbl

[26] L. Schwartz - Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, vol. 9-10, Hermann, 1966. | MR | Zbl

[27] D. N. Shanbhag - « The Davidson-Kendall problem and related results on the structure of the Wishart distribution », Austral. J. Statist. 30A (1988), p. 272-280. | Zbl

[28] T. J. Stieltjes - « Recherches sur les fractions continues », Ann. Fac. Sci. Toulouse 8 (1894), p. J1-J122, 9 (1895), p. A1-A47, reprinted, together with an English translation, in T. J. Stieltjes, Œuvres complètes/Collected Papers, Springer, 1993, vol. II, p. 401-566 and 609-745. | JFM | Numdam

[29] M. Vergne & H. Rossi - « Analytic continuation of the holomorphic discrete series of a semi-simple Lie group », Acta Math. 136 (1976), p. 1-59. | MR | Zbl

[30] N. R. Wallach - « The analytic continuation of the discrete series. I, II », Trans. Amer. Math. Soc. 251 (1979), p. 1-17, 19-37. | MR | Zbl

[31] R. A. Wijsman - Invariant measures on groups and their use in statistics, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 14, Institute of Mathematical Statistics, 1990. | MR | Zbl

Cited by Sources: