Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 4, pp. 689-771.

We construct complete Kähler metrics on the nonsingular set of a subvariety X of a compact Kähler manifold. To that end, we develop (i) a constructive method for replacing a sequence of blow-ups along smooth centers, with a single blow-up along a product of coherent ideals corresponding to the centers and (ii) an explicit local formula for a Chern form associated to this ‘singular’ blow-up. Our metrics have a particularly simple local formula of a sum of the original metric and of the pull back of the classical Poincaré metric on the punctured disc by a ‘size-function’ S I of a coherent ideal I used to resolve the singularities of X by a ‘singular’ blow-up, where (S I ) 2 := j=1 r f j 2 and the f j ’s are the local generators of the ideal I . Our proof of (i) makes use of our generalization of Chow’s theorem for coherent ideals. We prove Saper type growth for our metric near the singular set and local boundedness of the gradient of a local generating function for our metric, motivated by results of Donnelly-Fefferman, Ohsawa, and Gromov on the vanishing of certain L 2 -cohomology groups.

Nous construisons des métriques complètes Kähleriennes sur le lieu non-singulier d’une sous-variété X d’une variété compacte Kählerienne lisse. A cet effet, nous développons : (i) une méthode constructive pour le remplacement d’une suite d’éclatements le long des centres lisses par un seul éclatement le long d’un produit d’idéaux cohérents et (ii) une formule locale explicite pour une forme de Chern associée à cet éclatement. Nos métriques sont décrites par une formule locale particulièrement simple comme la somme de la métrique de départ et le tire-en-arrière de la métrique de Poincaré classique sur le disque épointé par une ‘fonction de grandeur’ S I de l’idéal cohérent I utilisé pour la résolution des singularités de X, ou (S I ) 2 := j=1 r f j 2 et les f j sont des générateurs locaux de I. Notre preuve de (i) utilise notre généralisation du théorème de Chow pour les idéaux cohérents. Nous montrons que la vitesse de croissance de notre métrique près du lieu singulier est de type Saper ainsi que le fait que le gradient d’une fonction génératrice locale de notre métrique est borné. Cela est motivé par les résultats de Donnelly-Fefferman, Ohsawa, et Gromov sur l’annulation de certains groupes de cohomologie L 2 .

DOI: 10.5802/afst.1134
Grant Melles, Caroline 1; Milman, Pierre 2

1 Mathematics Department, United States Naval Academy, 572C Holloway Rd, Annapolis, Maryland 21402-5002, United States of America.
2 Department of Mathematics, University of Toronto, 40 St George St, Toronto, Ontario M5S 2E4, Canada.
@article{AFST_2006_6_15_4_689_0,
     author = {Grant Melles, Caroline and Milman, Pierre},
     title = {Classical {Poincar\'e} metric pulled back off singularities using a {Chow-type} theorem and desingularization},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {689--771},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 15},
     number = {4},
     year = {2006},
     doi = {10.5802/afst.1134},
     mrnumber = {2295209},
     zbl = {1207.32016},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1134/}
}
TY  - JOUR
AU  - Grant Melles, Caroline
AU  - Milman, Pierre
TI  - Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2006
SP  - 689
EP  - 771
VL  - 15
IS  - 4
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1134/
DO  - 10.5802/afst.1134
LA  - en
ID  - AFST_2006_6_15_4_689_0
ER  - 
%0 Journal Article
%A Grant Melles, Caroline
%A Milman, Pierre
%T Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2006
%P 689-771
%V 15
%N 4
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://archive.numdam.org/articles/10.5802/afst.1134/
%R 10.5802/afst.1134
%G en
%F AFST_2006_6_15_4_689_0
Grant Melles, Caroline; Milman, Pierre. Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 4, pp. 689-771. doi : 10.5802/afst.1134. http://archive.numdam.org/articles/10.5802/afst.1134/

[BM1] (E.), Bierstone; (P.), Milman Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997), pp. 207-302 | MR | Zbl

[BM2] (E.), Bierstone; (P.D.), Milman Desingularization of Toric and Binomial Varieties, J. Algebraic Geom., Volume 15 (2006), pp. 443-486 | MR | Zbl

[C] (J.), Cheeger On the Hodge Theory of Riemannian Pseudomanifolds, Proc. Symp. Pure Math., American Math. Soc., Volume 36 (1980), pp. 91-146 | MR | Zbl

[CGM] (J.), Cheeger; (M.), Goresky; (R.), MacPherson L 2 -Cohomology and Intersection Homology of Singular Algebraic Varieties, Seminar on Differential Geometry (Annals of Mathematics Studies), Princeton University Press, Princeton, NJ (1982) no. 102, pp. 303-340 | MR | Zbl

[DF] (H.), Donnelly; (C.), Fefferman L 2 -cohomology and index theorem for the Bergman metric, Ann. Math., Volume 118 (1983), pp. 593-618 | MR | Zbl

[F] (G.), Fischer Complex Analytic Geometry, Lecture Notes in Math., Springer-Verlag, Berlin Heidelberg, 1976 no. 538 | MR | Zbl

[Ful] (W.), Fulton Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd 2, Springer-Verlag, Berlin Heidelberg, 1984 | MR | Zbl

[GH] (P.), Griffiths; (J.), Harris Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978 | MR | Zbl

[GM1] Grant (C.), Milman (P.) Metrics for Singular Analytic Spaces, Pac. J. Math., Volume 168 (1995), pp. 61-156 | MR | Zbl

[GM2] (C.), Grant Melles; (P.), Milman Single-Step Combinatorial Resolution via Coherent Sheaves of Ideals, Singularities in Algebraic and Analytic Geometry (Contemporary Mathematics), American Mathematical Society, Providence, RI (2000) no. 266, pp. 77-88 | MR | Zbl

[GM3] (C.), Grant Melles; (P.), Milman Explicit Construction of Complete Kähler Metrics of Saper Type by Desingularization (1999) (Preprint math.AG/9907056, p. 1–43) | MR

[GoM] (M.), Goresky; (R.), MacPherson Intersection Homology II, Invent. Math., Volume 71 (1983), pp. 77-129 | MR | Zbl

[Gro] (M.), Gromov Kähler hyperbolicity and L 2 -Hodge theory, J. Diff. Geom., Volume 33 (1991), pp. 263-292 | MR | Zbl

[GrR1] (H.), Grauert; (R.), Remmert Coherent Analytic Sheaves, Grundlehren der mathematischen Wissenschaften, 265, Springer-Verlag, Berlin Heidelberg,, 1984 | MR | Zbl

[GrR2] (H.), Grauert; (R.), Remmert Theory of Stein Spaces, Grundlehren der mathematischen Wissenschaften, 236, Springer-Verlag, New York, 1979 | MR | Zbl

[GuR] (R.), Gunning; (H.), Rossi Analytic Functions of Several Complex Variables, Prentice-Hall Inc., Englewood Cliffs, NJ, 1965 | MR | Zbl

[Ha1] (R.), Hartshorne Graduate Texts in Mathematics, Algebraic Geometry, Springer-Verlag, New York, 1977 no. 52 | MR | Zbl

[Ha2] (R.), Hartshorne Ample Subvarieties of Algebraic Varieties (Lecture Notes in Math.), Volume 156, Springer-Verlag, Heidelberg, 1970 | MR | Zbl

[Hi] (H.), Hironaka Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. Math., Volume 79 (1964), pp. 109-326 | MR | Zbl

[Ho] (L.), Hörmander An Introduction to Complex Analysis in Several Variables, North-Holland, New York, 1973 | MR | Zbl

[HR] Hironaka (H.), Rossi (H.) On the Equivalence of Imbeddings of Exceptional Complex Spaces, Math. Annalen, Volume 156 (1964), pp. 313-333 | MR | Zbl

[I] (S.), Iitaka Graduate Texts in Mathematics, Algebraic Geometry, Springer-Verlag, New York, 1982 no. 76 | MR | Zbl

[K] (E.), Kunz Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985 | MR | Zbl

[Lo] (S.), Lojasiewicz Introduction to Complex Analytic Geometry, Birkhauser, Basel, 1991 | MR | Zbl

[LT] Lejeune-Jalabert (M.), Teissier (B.) 1, Clôture integrale des ideaux et equisingularité, Publ. Inst. Fourier (1974)

[M] (D.), Mumford Algebraic Geometry I Complex Projective Varieties, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin Heidelberg, 1976 no. 221 | MR | Zbl

[Ma] (H.), Matsumura Commutative Algebra, W. A. Benjamin Co., New York, 1970 | MR | Zbl

[O] (T.), Ohsawa Hodge Spectral Sequence on Compact Kähler Spaces, Publ. R.I.M.S., Kyoto Univ., Volume 23 (1987), pp. 265-274 | MR | Zbl

[Sa1] (L.), Saper L 2 -cohomology and intersection homology of certain algebraic varieties with isolated singularities, Invent. Math., Volume 82 (1985), pp. 207-255 | MR | Zbl

[Sa2] (L.), Saper L 2 -cohomology of Kähler varieties with isolated singularities, J. Diff. Geom., Volume 36 (1992), pp. 89-161 | MR | Zbl

[Sh] (I.), Shafarevich Basic Algebraic Geometry, 2, Springer-Verlag, Berlin Heidelberg, 1994 | Zbl

[Sp] (M.), Spivakovsky Valuations in Function Fields of Surfaces, Am. J. Math., Volume 112 (1990), pp. 107-156 | MR | Zbl

[W] (R.O.), Wells Graduate Texts in Mathematics, Differential Analysis on Complex Manifolds, Springer-Verlag, New York, 1980 no. 65 | MR | Zbl

[ZS] (O.), Zariski; (P.), Samuel Graduate Texts in Mathematics, Commutative Algebra Volume II, Springer-Verlag, New York, 1960 no. 29 | MR | Zbl

[Zu1] (S.), Zucker Hodge theory with degenerating coefficients: L 2 cohomology in the Poincaré metric, Ann. Math., Volume 109 (1979), pp. 415-476 | MR | Zbl

[Zu2] (S.), Zucker L 2 cohomology of Warped Products and Arithmetic Groups, Invent. Math., Volume 70 (1982), pp. 169-218 | MR | Zbl

Cited by Sources: