On considère une application holomorphe non dégénérée où est une variété Hermitienne compacte de dimension supérieure ou égale à et est une variété complexe, connexe, ouverte de dimension . Dans cet article, nous donnons des critères qui permettent de construire des courants d’Ahlfors dans .
We consider a nondegenerate holomorphic map where is a compact Hermitian manifold of dimension larger than or equal to and is an open connected complex manifold of dimension . In this article we give criteria which permit to construct Ahlfors’ currents in .
@article{AFST_2010_6_19_1_121_0, author = {de Th\'elin, Henry}, title = {Ahlfors{\textquoteright} currents in higher dimension}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {121--133}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {1}, year = {2010}, doi = {10.5802/afst.1239}, mrnumber = {2597784}, zbl = {1195.32004}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1239/} }
TY - JOUR AU - de Thélin, Henry TI - Ahlfors’ currents in higher dimension JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 DA - 2010/// SP - 121 EP - 133 VL - Ser. 6, 19 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1239/ UR - https://www.ams.org/mathscinet-getitem?mr=2597784 UR - https://zbmath.org/?q=an%3A1195.32004 UR - https://doi.org/10.5802/afst.1239 DO - 10.5802/afst.1239 LA - en ID - AFST_2010_6_19_1_121_0 ER -
de Thélin, Henry. Ahlfors’ currents in higher dimension. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 1, pp. 121-133. doi : 10.5802/afst.1239. http://archive.numdam.org/articles/10.5802/afst.1239/
[1] Brunella (M.).— Courbes entières et feuilletages holomorphes, Enseign. Math., 45, p. 195-216 (1999). | MR 1703368 | Zbl 1004.32011
[2] Carlson (J.A.) and Griffiths (P.).— The order functions for entire holomorphic mappings, Proc. Tulane Univ. Program, p. 225-248 (1974). | MR 404699 | Zbl 0289.32017
[3] Chern (S.-S.).— The integrated form of the first main theorem for complex analytic mappings in several complex variables, Ann. of Math. (2), 71, p. 536-551 (1960). | MR 125979 | Zbl 0142.04802
[4] Chirka (E.M.).— Complex analytic sets, Kluwer Academic Publishers (1989). | MR 1111477 | Zbl 0683.32002
[5] Demailly (J.-P.).— Complex analytic and algebraic geometry, http://www-fourier.ujf-grenoble.fr/demailly/books.html, 1997.
[6] Duval (J.).— Singularités des courants d’Ahlfors, Ann. Sci. Ecole Norm. Sup., 39, p. 527-533 (2006). | Numdam | MR 2265678
[7] Griffiths (P.).— Some remarks on Nevanlinna theory, Proc. Tulane Univ. Program, p. 1-11 (1974). | MR 352545 | Zbl 0288.32018
[8] Hirschfelder (J.J.).— The first main theorem of value distribution in several variables, Invent. Math., 8, p. 1-33 (1969). | MR 245840 | Zbl 0175.37103
[9] Lang (S.).— Introduction to complex hyperbolic spaces, Springer-Verlag (1987). | MR 886677 | Zbl 0628.32001
[10] McQuillan (M.).— Diophantine approximations and foliations, Inst. Hautes Etudes Sci. Publ. Math., 87, p. 121-174 (1998). | Numdam | MR 1659270 | Zbl 1006.32020
[11] Range (R.M.).— Holomorphic functions and integral representations in several complex variables, Springer-Verlag (1986). | MR 847923 | Zbl 0591.32002
[12] Sibony (N.) and Wong (P.M.).— Some remarks on the Casorati-Weierstrass theorem, Ann. Polon. Math., 39, p. 165-174 (1981). | MR 617458 | Zbl 0476.32005
[13] Stoll (W.).— A general first main theorem of value distribution, Acta Math., 118, p. 111-191 (1967). | MR 217339 | Zbl 0148.31905
[14] Wu (H.).— Remarks on the first main theorem in equidistribution theory II, J. Differential Geometry, 2, p. 369-384 (1968). | MR 276501 | Zbl 0177.11301
Cité par Sources :