We provide new examples of diffusion operators in dimension 2 and 3 which have orthogonal polynomials as eigenvectors. Their construction relies on the finite subgroups of and their invariant polynomials.
@article{AFST_2016_6_25_2-3_683_0, author = {Bakry, Dominique and Bressaud, Xavier}, title = {Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {683--721}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {2-3}, year = {2016}, doi = {10.5802/afst.1508}, zbl = {1369.35038}, mrnumber = {3530172}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1508/} }
TY - JOUR AU - Bakry, Dominique AU - Bressaud, Xavier TI - Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 DA - 2016/// SP - 683 EP - 721 VL - Ser. 6, 25 IS - 2-3 PB - Université Paul Sabatier, Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1508/ UR - https://zbmath.org/?q=an%3A1369.35038 UR - https://www.ams.org/mathscinet-getitem?mr=3530172 UR - https://doi.org/10.5802/afst.1508 DO - 10.5802/afst.1508 LA - en ID - AFST_2016_6_25_2-3_683_0 ER -
Bakry, Dominique; Bressaud, Xavier. Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 2-3, pp. 683-721. doi : 10.5802/afst.1508. http://archive.numdam.org/articles/10.5802/afst.1508/
[1] Bakry (D.), Gentil (I.), and Ledoux (M.).— Analysis and Geometry of Markov Diffusion Operators, Grund. Math. Wiss., vol. 348, Springer, Berlin (2013). | Article
[2] Bakry (D.) and Mazet (O.).— Characterization of Markov semigroups on R associated to some families of orthogonal polynomials, Séminaire de Probabilités XXXVII, Lecture Notes in Math., vol. 1832, Springer, Berlin, p. 60-80 (2003). MR MR2053041 | Article
[3] Bakry (D.), Orevkov (S.), and Zani (M.).— Orthogonal polynomials and diffusions operators.
[4] Meyer (B.).— On the symmetries of spherical harmonics, Canadian J. Math. 6, p. 135-157 (1954). | Article | MR 59406 | Zbl 0055.06301
[5] Smith (L.).— Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA (1995). | Article
[6] Smith (L.).— Polynomial invariants of finite groups. A survey of recent developments, Bull. Amer. Math. Soc. (N.S.) 34, no. 3, p. 211-250 (1997). | Article | MR 1433171 | Zbl 0904.13004
[7] Stanley (R. P.).— Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1, no. 3, p. 475-511 (1979). | Article | MR 526968 | Zbl 0497.20002
Cité par Sources :