We prove a version of Aubin’s “Hypothèse fondamentale” concerning the existence of Moser–Trudinger type inequalities on any integral compact Kähler manifold
@article{AFST_2022_6_31_3_595_0, author = {Berman, Robert J. and Berndtsson, Bo}, title = {Moser{\textendash}Trudinger type inequalities for complex {Monge{\textendash}Amp\`ere} operators and {Aubin{\textquoteright}s} {\textquotedblleft}hypoth\`ese fondamentale{\textquotedblright}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {595--645}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {3}, year = {2022}, doi = {10.5802/afst.1704}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1704/} }
TY - JOUR AU - Berman, Robert J. AU - Berndtsson, Bo TI - Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale” JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 595 EP - 645 VL - 31 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1704/ DO - 10.5802/afst.1704 LA - en ID - AFST_2022_6_31_3_595_0 ER -
%0 Journal Article %A Berman, Robert J. %A Berndtsson, Bo %T Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale” %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 595-645 %V 31 %N 3 %I Université Paul Sabatier, Toulouse %U https://www.numdam.org/articles/10.5802/afst.1704/ %R 10.5802/afst.1704 %G en %F AFST_2022_6_31_3_595_0
Berman, Robert J.; Berndtsson, Bo. Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale”. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, AMAZER, Tome 31 (2022) no. 3, pp. 595-645. doi : 10.5802/afst.1704. https://www.numdam.org/articles/10.5802/afst.1704/
[1] On Dirichlet’s principle and problem, Math. Scand., Volume 110 (2012) no. 2, pp. 235-250 | DOI | MR | Zbl
[2] Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Adv. Math., Volume 222 (2009) no. 6, pp. 2036-2058 | DOI | MR | Zbl
[3] Réduction du cas positif de l´equation de Monge–Ampère sur les variétés kahleriennes compactes à la démonstration d’une inégalité, J. Funct. Anal., Volume 57 (1984), pp. 143-153 | DOI | MR | Zbl
[4] Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer, 1998 | DOI | Zbl
[5] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math., Volume 138 (1993) no. 1, pp. 213-242 | DOI | MR | Zbl
[6] Plurisubharmonic functions with weak singularities, Complex analysis and digital geometry (Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist.), Volume 86, Univ. Uppsala, 2009, pp. 57-74 | MR | Zbl
[7] Analytic torsion, vortices and positive Ricci curvature (2010) (https://arxiv.org/abs/1006.2988)
[8] A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kahler–Einstein metrics, Adv. Math., Volume 248 (2013), pp. 1254-1297 | DOI | Zbl
[9] Symmetrization of Plurisubharmonic and Convex Functions, Indiana Univ. Math. J., Volume 63 (2014) no. 2, pp. 345-365 | DOI | MR | Zbl
[10] The volume of Kähler–Einstein Fano varieties and convex bodies, J. Reine Angew. Math., Volume 723 (2017), pp. 127-152 | Zbl
[11] A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013) no. 1, pp. 179-245 | DOI | Numdam | Zbl
[12] Kähler–Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 27-89 | DOI | Zbl
[13] Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology (Progress in Mathematics), Volume 296, Birkhäuser, 2012, pp. 39-66 | DOI | MR | Zbl
[14] An arithmetic Hilbert-Samuel theorem for singular hermitian line bundles and cusp forms, Compos. Math., Volume 150 (2014) no. 10, pp. 1703-1728 | DOI | MR | Zbl
[15] Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl
[16] Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differ. Geom., Volume 81 (2009) no. 3, pp. 457-482 | Zbl
[17] A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., Volume 200 (2015) no. 1, pp. 149-200 | DOI | Zbl
[18] A comparison principle for Bergman kernels, Analysis meets geometry (Trends in Mathematics), Birkhäuser, 2017, pp. 121-126 | DOI | Zbl
[19] Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI | MR | Zbl
[20] On the
[21] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[22] Uniform estimates and blow-up behavior for solutions of
[23] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., Volume 143 (1992) no. 3, pp. 501-525 | DOI | MR | Zbl
[24] Connexite rationnelle des varietes de Fano, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992) no. 5, pp. 539-545 | DOI | Numdam | MR | Zbl
[25] Pluricomplex energy, Acta Math., Volume 180 (1998) no. 2, pp. 187-217 | DOI | MR | Zbl
[26] Approximation of plurisubharmonic functions in hyperconvex domains, Complex analysis and digital geometry (Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist.), Volume 86, Univ. Uppsala, 2009, pp. 125-129 | MR | Zbl
[27] The Dirichlet problem for the complex Monge–Ampère operator: stability in
[28] Subextension of plurisubharmonic functions with bounded Monge–Ampère mass, C. R. Acad. Sci. Paris, Volume 336 (2003) no. 4, pp. 305-308 | DOI | Zbl
[29] Log canonical thresholds of Fano threefold hypersurfaces (Russian), Izv. Math., Volume 73 (2009) no. 4, pp. 77-152
[30] On the singularity type of full mass currents in big cohomology classes, Compos. Math., Volume 154 (2018) no. 2, pp. 380-409 | DOI | MR | Zbl
[31] Radially symmetric boundary value problems for real and complex elliptic Monge–Ampère equations, J. Differ. Equations, Volume 58 (1985), pp. 318-344 | DOI | Zbl
[32] Estimates on Monge–Ampère operators derived from a local algebra inequality, Complex analysis and digital geometry (Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist.), Volume 86, Univ. Uppsala, 2009, pp. 131-143 | Zbl
[33] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001) no. 4, pp. 525-556 | DOI | Numdam | Zbl
[34] A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014) no. 1, pp. 1-9 | DOI | MR | Zbl
[35] Finite entropy vs finite energy, Comment. Math. Helv., Volume 96 (2021) no. 2, pp. 389-419 | DOI | MR | Zbl
[36] Remarks on the existence problem of positive Kähler–Einstein metrics, Math. Ann., Volume 282 (1988) no. 3, pp. 463-472 | DOI | Zbl
[37] The generalized Moser–Trudinger Inequality, Nonlinear analysis and microlocal analysis (Nankai Series in Pure, Applied Mathematics and Theoretical Physics), Volume 2, World Scientific, 1993, pp. 57-70 | Zbl
[38] Multiplicities and log canonical threshold, J. Algebr. Geom., Volume 13 (2004) no. 3, pp. 603-615 | DOI | MR | Zbl
[39] Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv., Volume 68 (1993) no. 3, pp. 415-454 | DOI | MR | Zbl
[40] Optimal bounds for the volumes of Kähler–Einstein Fano manifolds, Am. J. Math., Volume 140 (2018) no. 2, pp. 391-414 | DOI | Zbl
[41] Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979), pp. 209-243 | DOI | MR | Zbl
[42] Kähler–Einstein fillings, J. Lond. Math. Soc., Volume 88 (2013) no. 3, pp. 737-760 | DOI | Zbl
[43] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. (2005) no. 4, pp. 607-639 | DOI | Zbl
[44] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | Zbl
[45] On the degrees of Fano four-folds of Picard number 1, J. Reine Angew. Math., Volume 556 (2003), pp. 225-235 | MR | Zbl
[46] Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes, Ann. Inst. Fourier, Volume 33 (1983) no. 2, pp. 151-165 | DOI | Numdam | Zbl
[47] Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., Volume 46 (1993) no. 1, pp. 27-56 | DOI | MR | Zbl
[48] Rational connectedness and boundedness of Fano manifolds, J. Differ. Geom., Volume 36 (1992) no. 3, pp. 765-779 | MR | Zbl
[49] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | Zbl
[50] A Pohožaev identity and critical exponents of some complex Hessian equations, J. Partial Differ. Equations, Volume 29 (2016) no. 3, pp. 175-194 | DOI | MR | Zbl
[51] On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Éc. Norm. Supér., Volume 13 (1980), pp. 451-468 | Numdam | MR | Zbl
[52] Convergence for a Liouville equation, Comment. Math. Helv., Volume 76 (2001) no. 3, pp. 506-514 | MR | Zbl
[53] A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077-1092 | DOI | MR | Zbl
[54] The Moser–Trudinger inequality on Kähler–Einstein manifolds, Am. J. Math., Volume 130 (2008) no. 4, pp. 1067-1085 | DOI | Zbl
[55] Extremal cases for the log canonical threshold, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 1, pp. 21-24 | DOI | MR | Zbl
[56] The partial
[57] Regularity of weak solutions of a complex Monge–Ampère equation, Anal. PDE, Volume 4 (2011) no. 3, pp. 369-378 | DOI | Zbl
[58] On Kähler–Einstein metrics on certain Kähler manifolds with
[59] On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., Volume 101 (1990) no. 1, pp. 101-172 | DOI | MR | Zbl
[60] Canonical Metrics in Kähler Geometry, Lectures in Mathematics, Birkhäuser, 2000 | DOI
[61] Kahler-Einstein metrics on complex surfaces with
[62] On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473-483 | MR | Zbl
[63] Book review of: Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Bull. Am. Math. Soc., Volume 46 (2009) no. 2, pp. 349-361 | DOI | Zbl
Cité par Sources :