We show that degenerate complex Monge-Ampère equations in a big cohomology class of a compact Kähler manifold can be solved using a variational method, without relying on Yau’s theorem. Our formulation yields in particular a natural pluricomplex analogue of the classical logarithmic energy of a measure. We also investigate Kähler-Einstein equations on Fano manifolds. Using continuous geodesics in the closure of the space of Kähler metrics and Berndtsson’s positivity of direct images, we extend Ding-Tian’s variational characterization and Bando-Mabuchi’s uniqueness result to singular Kähler-Einstein metrics. Finally, using our variational characterization we prove the existence, uniqueness and convergence as k→∞ of k-balanced metrics in the sense of Donaldson both in the (anti)canonical case and with respect to a measure of finite pluricomplex energy.
@article{PMIHES_2013__117__179_0, author = {Berman, Robert J. and Boucksom, S\'ebastien and Guedj, Vincent and Zeriahi, Ahmed}, title = {A variational approach to complex {Monge-Amp\`ere} equations}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {179--245}, publisher = {Springer-Verlag}, volume = {117}, year = {2013}, doi = {10.1007/s10240-012-0046-6}, zbl = {1277.32049}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-012-0046-6/} }
TY - JOUR AU - Berman, Robert J. AU - Boucksom, Sébastien AU - Guedj, Vincent AU - Zeriahi, Ahmed TI - A variational approach to complex Monge-Ampère equations JO - Publications Mathématiques de l'IHÉS PY - 2013 SP - 179 EP - 245 VL - 117 PB - Springer-Verlag UR - http://archive.numdam.org/articles/10.1007/s10240-012-0046-6/ DO - 10.1007/s10240-012-0046-6 LA - en ID - PMIHES_2013__117__179_0 ER -
%0 Journal Article %A Berman, Robert J. %A Boucksom, Sébastien %A Guedj, Vincent %A Zeriahi, Ahmed %T A variational approach to complex Monge-Ampère equations %J Publications Mathématiques de l'IHÉS %D 2013 %P 179-245 %V 117 %I Springer-Verlag %U http://archive.numdam.org/articles/10.1007/s10240-012-0046-6/ %R 10.1007/s10240-012-0046-6 %G en %F PMIHES_2013__117__179_0
Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed. A variational approach to complex Monge-Ampère equations. Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 179-245. doi : 10.1007/s10240-012-0046-6. http://archive.numdam.org/articles/10.1007/s10240-012-0046-6/
[Ale38] On the theory of mixed volumes of convex bodies III: Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sb., Volume 3 (1938), pp. 27-44 (Russian). [English translation available in Selected Works Part I: Selected Scientific Papers, Gordon and Breach]
[AT84] Comparison of two capacities in C n , Math. Z., Volume 186 (1984), pp. 407-417 | DOI | MR | Zbl
[Aub84] Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal., Volume 57 (1984), pp. 143-153 | DOI | MR | Zbl
[BM87] Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic Geometry (Adv. Stud. Pure Math., 10), Kinokuniya, Tokyo (1987), pp. 11-40 | Zbl
[BT82] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl
[BT87] Fine topology, Šilov boundary, and (dd c ) n , J. Funct. Anal., Volume 72 (1987), pp. 225-251 | DOI | MR | Zbl
[BGZ09] Plurisubharmonic functions with weak singularities, Complex Analysis and Digital Geometry (Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist, 86), Uppsala Universitet, Uppsala (2009), pp. 57-74 | Zbl
[Berm09] Bergman kernels and equilibrium measures for line bundles over projective manifolds, Am. J. Math., Volume 131 (2009), pp. 1485-1524 | DOI | Zbl
[BB10] Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010), pp. 337-394 | DOI | MR | Zbl
[BD12] Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in Analysis, Geometry, and Topology (Progr. Math., 296), Birkhäuser/Springer, New York (2012), pp. 39-66 | DOI | Zbl
[BBEGZ11] R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Kähler-Ricci flow and Ricci iteration on log-Fano varieties, preprint (2011), . | arXiv
[Bern09a] Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009), pp. 531-560 | DOI | MR | Zbl
[Bern09b] Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differ. Geom., Volume 81 (2009), pp. 457-482 | MR | Zbl
[BCHM10] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 | DOI | MR | Zbl
[Bło09] On geodesics in the space of Kähler metrics, Advances in Geometric Analysis (Advanced Lectures in Mathematics, 21), International Press, Somerville (2012), pp. 3-20 Proceedings of the Conference in Geometry dedicated to Shing-Tung Yau (Warsaw, April 2009) | Zbl
[BK07] On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., Volume 135 (2007), pp. 2089-2093 | DOI | Zbl
[Bou90] Convergence de la métrique de Fubini-Study d’un fibré linéaire positif, Ann. Inst. Fourier, Volume 40 (1990), pp. 117-130 | DOI | Numdam | MR | Zbl
[Bou04] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Super., Volume 37 (2004), pp. 45-76 | Numdam | MR | Zbl
[BEGZ10] Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010), pp. 199-262 | DOI | MR | Zbl
[Cat99] The Bergman kernel and a theorem of Tian, Analysis and Geometry in Several Complex Variables (Trends Math.), Birkhäuser, Boston (1999), pp. 1-23 | DOI | Zbl
[Ceg98] Pluricomplex energy, Acta Math., Volume 180 (1998), pp. 187-217 | DOI | MR | Zbl
[Che00] The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000), pp. 189-234 | Zbl
[CGZ08] Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z., Volume 259 (2008), pp. 393-418 | DOI | MR | Zbl
[Dem92] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992), pp. 361-409 | MR | Zbl
[Dem91] J. P. Demailly, Potential theory in several complex variables, survey available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
[Din09] Uniqueness and stability in ${\mathcal{E}}(X,\omega)$ , J. Funct. Anal., Volume 256 (2009), pp. 2113-2122 | DOI | MR | Zbl
[Ding88] Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann., Volume 282 (1988), pp. 463-471 | DOI | MR | Zbl
[Don01] Scalar curvature and projective embeddings I, J. Differ. Geom., Volume 59 (2001), pp. 479-522 | MR | Zbl
[Don05a] Scalar curvature and projective embeddings II, Q. J. Math., Volume 56 (2005), pp. 345-356 | DOI | MR | Zbl
[Don09] Some numerical results in complex differential geometry, Pure Appl. Math. Q., Volume 5 (2009), pp. 571-618 (Special Issue: In honor of Friedrich Hirzebruch. Part 1) | MR | Zbl
[Don99] et al. Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar (AMS Translations Series 2, 196), AMS, Providence (1999), pp. 13-33 | Zbl
[EGZ09] Singular Kähler-Einstein metrics, J. Am. Math. Soc., Volume 22 (2009), pp. 607-639 | DOI | MR | Zbl
[GZ05] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005), pp. 607-639 | DOI | MR | Zbl
[GZ07] The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007), pp. 442-482 | DOI | MR | Zbl
[Kel09] Ricci iterations on Kähler classes, J. Inst. Math. Jussieu, Volume 8 (2009), pp. 743-768 | DOI | MR | Zbl
[Koł98] The complex Monge-Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117 | DOI | MR | Zbl
[LV11] L. Lempert and L. Vivas, Geodesics in the space of Kähler metrics, preprint (2011), . | arXiv | Zbl
[LT83] Comparison of capacities in C n , Complex Analysis (Lecture Notes in Math., 1094), Springer, Berlin (1984), pp. 162-172 | Zbl
[Mab86] K-energy maps integrating Futaki invariants, Tohoku Math. J., Volume 38 (1986), pp. 575-593 | DOI | MR | Zbl
[Mab87] Some symplectic geometry on compact Kähler manifolds, Osaka J. Math., Volume 24 (1987), pp. 227-252 | MR | Zbl
[Nak04] Zariski Decompositions and Abundance, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004 (xiv+277 pp) | MR | Zbl
[PSSW08] The Moser-Trudinger inequality on Kähler-Einstein manifolds, Am. J. Math., Volume 130 (2008), pp. 1067-1085 | DOI | MR | Zbl
[Rai69] A note on the preceding paper, Duke Math. J., Volume 36 (1969), pp. 799-800 | DOI | MR | Zbl
[ST] Logarithmic Potentials with Exterior Fields, Springer, Berlin, 1997 (with an appendix by T. Bloom) | MR
[Sem92] Complex Monge-Ampère and symplectic manifolds, Am. J. Math., Volume 114 (1992), pp. 495-550 | DOI | MR | Zbl
[Sic81] Extremal plurisubharmonic functions in C n , Ann. Pol. Math., Volume 39 (1981), pp. 175-211 | MR | Zbl
[Siu08] Finite generation of canonical ring by analytic method, Sci. China Ser. A, Volume 51 (2008), pp. 481-502 | DOI | MR | Zbl
[Sko72] Sous-ensembles analytiques d’ordre fini ou infini dans C n , Bull. Soc. Math. Fr., Volume 100 (1972), pp. 353-408 | Numdam | MR | Zbl
[SoTi08] Canonical measures and Kähler-Ricci flow, J. Am. Math. Soc., Volume 25 (2012), pp. 303-353 | DOI | MR | Zbl
[SoTi09] J. Song and G. Tian, The Kähler-Ricci flow through singularities, preprint (2009), . | arXiv | MR
[SzTo11] Regularity of weak solutions of a complex Monge-Ampère equation, Anal. PDE, Volume 4 (2011), pp. 369-378 | DOI | MR | Zbl
[Tia90] On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990), pp. 99-130 | MR | Zbl
[Tia97] Kähler-Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997), pp. 239-265 | DOI | MR | Zbl
[Tian] Canonical Metrics in Kähler Geometry, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2000 | DOI | MR | Zbl
[Tsu10] Dynamical construction of Kähler-Einstein metrics, Nagoya Math. J., Volume 199 (2010), pp. 107-122 | MR | Zbl
[Wan05] Canonical metrics on stable vector bundles, Commun. Anal. Geom., Volume 13 (2005), pp. 253-285 | MR | Zbl
[Yau78] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | DOI | MR | Zbl
[Zel98] Szegö kernels and a theorem of Tian, Int. Math. Res. Not., Volume 6 (1998), pp. 317-331 | DOI | MR | Zbl
[Zer01] Volume and capacity of sublevel sets of a Lelong class of psh functions, Indiana Univ. Math. J., Volume 50 (2001), pp. 671-703 | DOI | MR | Zbl
Cité par Sources :