We show that for any group that is hyperbolic relative to subgroups that admit a proper affine isometric action on a uniformly convex Banach space, then acts properly on a uniformly convex Banach space as well.
Nous démontrons que si est un groupe relativement hyperbolique dont les groupes périphériques peuvent être munis d’actions affines propres sur des espaces de Banach uniformément convexes, alors lui aussi, peut être muni d’une action propre sur un (autre) espace de Banach uniformément convexe.
Revised:
Accepted:
Online First:
Published online:
@article{AHL_2020__3__35_0, author = {Chatterji, Indira and Dahmani, Fran\c{c}ois}, title = {Proper actions on $\ell ^p$-spaces for relatively hyperbolic groups}, journal = {Annales Henri Lebesgue}, pages = {35--66}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.26}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.26/} }
TY - JOUR AU - Chatterji, Indira AU - Dahmani, François TI - Proper actions on $\ell ^p$-spaces for relatively hyperbolic groups JO - Annales Henri Lebesgue PY - 2020 SP - 35 EP - 66 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.26/ DO - 10.5802/ahl.26 LA - en ID - AHL_2020__3__35_0 ER -
Chatterji, Indira; Dahmani, François. Proper actions on $\ell ^p$-spaces for relatively hyperbolic groups. Annales Henri Lebesgue, Volume 3 (2020), pp. 35-66. doi : 10.5802/ahl.26. http://archive.numdam.org/articles/10.5802/ahl.26/
[AL17] Actions affines isométriques propres des groupes hyperboliques sur des espaces , Expo. Math., Volume 35 (2017) no. 1, pp. 103-118 | DOI | Zbl
[Arn15] Spaces with labelled partitions and isometric affine actions on Banach spaces (2015) (https://arxiv.org/abs/1401.0125)
[BdlHV08] Kazhdan’s Property, New Mathematical Monographs, 11, Cambridge University Press, 2008 | MR | Zbl
[BFGM07] Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007) no. 1, pp. 57-105 | DOI | MR | Zbl
[Bou16] Cohomologie et actions isométriques propres sur les espaces , Geometry, topology, and dynamics in negative curvature (London Mathematical Society Lecture Note Series), Volume 425, Cambridge University Press, 2016, pp. 84-106 | DOI | MR | Zbl
[Bow12] Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | MR | Zbl
[Cla36] Uniformly convex spaces, Trans. Am. Math. Soc., Volume 40 (1936) no. 3, pp. 396-414 | DOI | MR | Zbl
[Dah03] Les groupes relativement hyperboliques et leurs bords, Ph. D. Thesis, Université Strasbourg 1 (France) (2003) http://www.theses.fr/2003STR13033 | MR
[Dah06] Accidental parabolics and relatively hyperbolic groups, Isr. J. Math., Volume 153 (2006), pp. 93-127 | DOI | MR | Zbl
[Day41] Some more uniformly convex spaces, Bull. Am. Math. Soc., Volume 47 (1941), pp. 504-507 | MR | Zbl
[DS05] Tree graded spaces and asymptotic cones of groups, Topology, Volume 44 (2005) no. 5, pp. 959-1058 | DOI | MR | Zbl
[DY08] Symbolic dynamics and relatively hyperbolic groups, Groups Geom. Dyn., Volume 2 (2008) no. 2, pp. 165-184 | DOI | MR | Zbl
[Ger12] Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal., Volume 22 (2012) no. 5, pp. 1361-1399 | DOI | MR | Zbl
[GRT] Proper actions and weak amenability for classical relatively hyperbolic groups (in preparation)
[GS18] Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Ann. Inst. Fourier, Volume 68 (2018) no. 6, pp. 2501-2552 | DOI | MR | Zbl
[Kaz67] On the connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl., Volume 1 (1967) no. 1, pp. 63-65 | DOI | Zbl
[Laf08] Un renforcement de la propriété (T), Duke Math. J., Volume 143 (2008) no. 3, pp. 559-602 | DOI | MR | Zbl
[LS77] Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, Springer, 1977 | MR | Zbl
[Min01] Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal., Volume 11 (2001) no. 4, pp. 807-839 | DOI | MR | Zbl
[MS17] A combination theorem for cubulation in small cancellation theory over free products, Ann. Inst. Fourier, Volume 67 (2017) no. 4, pp. 1613-1670 | DOI | Numdam | MR | Zbl
[Nic13] Proper isometric actions of hyperbolic groups on -spaces, Compos. Math., Volume 149 (2013) no. 5, pp. 773-792 | DOI | MR | Zbl
[NR97] Groups acting on CAT(0) cube complexes, Geom. Topol., Volume 1 (1997), pp. 1-7 | DOI | MR | Zbl
[Pan90] Cohomologie des variétés à courbure négative, cas du degré 1, Conference on partial differential equations and geometry (Rendiconti del Seminario Matematico), Universitá e Politecnico Torino, 1990, pp. 95-120 | Zbl
[Pan99] Hyperbolic products of groups, Vestn. Mosk. Univ., Volume 1999 (1999) no. 2, pp. 9-13 | MR | Zbl
[Pul07] The first -cohomology of some groups with one end, Arch. Math., Volume 88 (2007) no. 6, pp. 500-506 | DOI | MR | Zbl
[RS95] Canonical representatives and equations in hyperbolic groups, Invent. Math., Volume 120 (1995) no. 3, pp. 489-512 | DOI | MR | Zbl
[Wis04] Cubulating small cancellation groups, Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 150-214 | DOI | MR | Zbl
[Yu05] Hyperbolic groups admit proper affine isometric actions on -spaces, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 1144-1151 | MR | Zbl
Cited by Sources: