In this paper, we study the nonlinear Schrödinger equation coupled with the Maxwell equation. Using energy methods, we obtain a local existence result for the Cauchy problem.
Dans cet article, nous nous intéressons au couplage entre une équation de Schrödinger nonlinéaire et les équations de Maxwell. En utilisant des méthodes d’énergie, nous montrons que le problème de Cauchy est localement bien posé.
Revised:
Accepted:
Online First:
Published online:
Keywords: Schrödinger–Maxwell system, Cauchy problem, symmetric hyperbolic system, energy method
@article{AHL_2020__3__67_0, author = {Colin, Mathieu and Watanabe, Tatsuya}, title = {Cauchy problem for the nonlinear {Schr\"odinger} equation coupled with the {Maxwell} equation}, journal = {Annales Henri Lebesgue}, pages = {67--85}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.27}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.27/} }
TY - JOUR AU - Colin, Mathieu AU - Watanabe, Tatsuya TI - Cauchy problem for the nonlinear Schrödinger equation coupled with the Maxwell equation JO - Annales Henri Lebesgue PY - 2020 SP - 67 EP - 85 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.27/ DO - 10.5802/ahl.27 LA - en ID - AHL_2020__3__67_0 ER -
%0 Journal Article %A Colin, Mathieu %A Watanabe, Tatsuya %T Cauchy problem for the nonlinear Schrödinger equation coupled with the Maxwell equation %J Annales Henri Lebesgue %D 2020 %P 67-85 %V 3 %I ÉNS Rennes %U http://archive.numdam.org/articles/10.5802/ahl.27/ %R 10.5802/ahl.27 %G en %F AHL_2020__3__67_0
Colin, Mathieu; Watanabe, Tatsuya. Cauchy problem for the nonlinear Schrödinger equation coupled with the Maxwell equation. Annales Henri Lebesgue, Volume 3 (2020), pp. 67-85. doi : 10.5802/ahl.27. http://archive.numdam.org/articles/10.5802/ahl.27/
[ADM17] Nonlinear Maxwell-Schrödinger system and quantum magneto-hydrodynamics in 3-D, Commun. Math. Sci., Volume 15 (2017), pp. 451-479 | DOI | Zbl
[AG91] Opérateurs pseudo-différentiels et théorème de Nash–Moser, Savoirs Actuels, Éditions du CNRS, 1991 | Zbl
[AP08] Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., Volume 345 (2008), pp. 90-108 | DOI | Zbl
[BdBS95] Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, Volume 8 (1995) no. 2, pp. 235-253 | DOI | Zbl
[BF14] Solitons in Schrödinger-Maxwell equations, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 101-132 | DOI | Zbl
[BS11] Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., Volume 62 (2011), pp. 267-280 | DOI | Zbl
[BT09] Global wellposedness in the energy space for the Maxwell-Schrödinger system, Commun. Math. Phys., Volume 288 (2009) no. 1, pp. 145-198 | DOI | Zbl
[CC04] On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ., Volume 17 (2004) no. 3-4, pp. 297-330 | MR | Zbl
[CDSS13] Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 10, pp. 1915-1938 | DOI | Zbl
[CE88] On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., Volume 7 (1988) no. 3, pp. 155-168 | Zbl
[CG01] An initial-boundary value problem for the Korteweg-de-Vries equation posed on a finite interval, Adv. Differ. Equ., Volume 6 (2001) no. 12, pp. 1463-1492 | MR | Zbl
[Col02] On the local well-posedness of quasilinear Schrödinger equation in arbitrary space dimension, Commun. Partial Differ. Equations, Volume 27 (2002) no. 1-2, pp. 325-354 | DOI | Zbl
[CW16] Cauchy problem for the nonlinear Klein-Gordon equation coupled with the Maxwell equation, J. Math. Anal. Appl., Volume 443 (2016) no. 2, pp. 778-796 | DOI | MR | Zbl
[CW17] Standing waves for the nonlinear Schrödinger equation coupled with the Maxwell equation, Nonlinearity, Volume 30 (2017) no. 5, pp. 1920-1947 | DOI | Zbl
[DFVV10] Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., Volume 258 (2010) no. 10, pp. 3227-3240 | DOI | Zbl
[Fel98] Geometry, particles and fields, Graduate Texts in Contemporary Physics, Springer, 1998 | MR | Zbl
[GR91] Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 54 (1991) no. 4, pp. 403-433 | Numdam | MR | Zbl
[Kik07] Existence and stability of standing waves for Schrödinger–Poisson–Salter equation, Adv. Nonlinear Stud., Volume 7 (2007) no. 3, pp. 403-437 | Zbl
[Mic08] Remarks on non-linear Schrödinger equation with magnetic fields, Commun. Partial Differ. Equations, Volume 33 (2008) no. 7, pp. 1198-1215 | DOI | MR | Zbl
[NT86] The Cauchy problem for the coupled Maxwell–Schrödinger equations, J. Math. Phys., Volume 27 (1986), pp. 211-216 | DOI | Zbl
[NW07] Global existence and uniqueness of solutions to the Maxwell–Schrödinger equations, Commun. Math. Phys., Volume 276 (2007) no. 2, pp. 315-339 | DOI | Zbl
[OT92] Existence and smoothing effect of solution for the Zakharov equations, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 3, pp. 329-361 | DOI | MR | Zbl
[RV08] Stationary ring solitons in field theory - Knots and vortons, Phys. Rep., Volume 468 (2008) no. 4, pp. 101-151 | DOI | MR
Cited by Sources: