We consider shape optimization problems for general integral functionals of the calculus of variations, defined on a domain that varies over all subdomains of a given bounded domain of . We show in a rather elementary way the existence of a solution that is in general a quasi open set. Under very mild conditions we show that the optimal domain is actually open and with finite perimeter. Some counterexamples show that in general this does not occur.
On considère des problèmes d’optimisation de forme pour des fonctionnelles intégrales générales, parmi les domaines parcourant tous les sous-domaines d’un domaine borné donné de . Nous montrons de manière assez élémentaire l’existence d’une solution qui en général est un ensemble quasi ouvert. Sous des conditions très faibles, nous prouvons que le domaine optimal est en fait ouvert et de périmètre fini. Des contre-exemples montrent que ce n’est pas toujours le cas.
Revised:
Accepted:
Published online:
Keywords: shape optimization, quasi open sets, finite perimeter, integral functionals.
@article{AHL_2020__3__261_0, author = {Buttazzo, Giuseppe and Shrivastava, Harish}, title = {Optimal shapes for general integral functionals}, journal = {Annales Henri Lebesgue}, pages = {261--272}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.31}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.31/} }
TY - JOUR AU - Buttazzo, Giuseppe AU - Shrivastava, Harish TI - Optimal shapes for general integral functionals JO - Annales Henri Lebesgue PY - 2020 SP - 261 EP - 272 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.31/ DO - 10.5802/ahl.31 LA - en ID - AHL_2020__3__261_0 ER -
Buttazzo, Giuseppe; Shrivastava, Harish. Optimal shapes for general integral functionals. Annales Henri Lebesgue, Volume 3 (2020), pp. 261-272. doi : 10.5802/ahl.31. http://archive.numdam.org/articles/10.5802/ahl.31/
[BB05] Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations, 65, Birkhäuser, 2005 | MR | Zbl
[BDM93] An existence result for a class of shape optimization problems, Arch. Ration. Mech. Anal., Volume 122 (1993) no. 2, pp. 183-195 | DOI | MR | Zbl
[BHP05] Lipschitz continuity of state functions in some optimal shaping, Calc. Var. Partial Differ. Equ., Volume 23 (2005) no. 1, pp. 13-32 | DOI | MR | Zbl
[Bri04] Regularity of optimal shapes for the DirichletÕs energy with volume constraint, ESAIM, Control Optim. Calc. Var., Volume 10 (2004) no. 1, pp. 99-122 | DOI | MR | Zbl
[Buc12] Minimization of the -th eigenvalue of the Dirichlet Laplacian, Arch. Ration. Mech. Anal., Volume 206 (2012) no. 3, pp. 1073-1083 | DOI | MR | Zbl
[But89] Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Reseqrch Notes in Mathematics Series, 207, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989 | MR | Zbl
[GG84] Quasi-minima, Ann. Inst. Henri Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 7-107 | Numdam | Zbl
[Giu03] Direct Methods in the Calculus of Variations, World Scientific Publishing, Singapore, 2003 | Zbl
[Hay99] Lipschitz continuity of the state function in a shape optimization problem, J. Conv. Anal., Volume 6 (1999) no. 1, pp. 71-90 | MR | Zbl
[HM05] Variation et Optimisation de Formes. Une Analyse Géométrique, Mathématiques & Applications, 48, Springer, 2005 | Zbl
[Maz11] Sobolev Spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, 342, Springer, 2011 | MR | Zbl
[Zie89] Weakly Differentiable Functions, Springer, 1989 | Zbl
Cited by Sources: