A Hörmander condition for delayed stochastic differential equations
Annales Henri Lebesgue, Volume 3 (2020), pp. 1023-1048.

In this paper, we are interested in path-dependent stochastic differential equations (SDEs) which are controlled by Brownian motion and its delays. Within this non-Markovian context, we give a Hörmander-type criterion for the regularity of solutions. Indeed, our criterion is expressed as a spanning condition with brackets. A novelty in the case of delays is that noise can “flow from the past” and give additional smoothness thanks to semi-brackets.

The proof follows the general lines of Malliavin’s probabilistic proof, in the Markovian case. Nevertheless, in order to handle the non-Markovian aspects of this problem and to treat anticipative integrals in a path-wise fashion, we heavily invoke rough path integration.

Nous envisageons des équations différentielles stochastiques (EDS) avec une dépendance en la trajectoire à travers des retards. Dans ce contexte non-markovien, nous exhibons un critère de Hörmander pour la régularité des marginales des solutions. Notre critère s’exprime en effet grâce à des crochets de Lie de champs de vecteurs. Une nouveauté dans le cas avec retard est que le bruit peut « se propager depuis le passé » et donner lieu à de la régularité grâce à des demi-crochets.

La preuve suit dans les grandes lignes celle de Malliavin pour le cas markovien. Néanmoins, afin de traiter les intégrales anticipatives de façon trajectorielle ainsi que certains aspects non-markoviens dûs aux retards, nous invoquons la théorie des chemins rugueux de façon essentielle.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ahl.53
Classification: 60G30, 60H07, 60H10
Keywords: Hörmander-type criterion, Malliavin calculus, Delayed stochastic differential equation, Rough path integration
Chhaibi, Reda 1; Ekren, Ibrahim 2

1 Université Paul Sabatier, Toulouse 3 Institut de mathématiques de Toulouse (IMT) 118, route de Narbonne 31400, Toulouse (France)
2 Department of Mathematics Florida State University 1017 Academic Way, Tallahassee FL 32306 (USA)
@article{AHL_2020__3__1023_0,
     author = {Chhaibi, Reda and Ekren, Ibrahim},
     title = {A {H\"ormander} condition for delayed stochastic differential equations},
     journal = {Annales Henri Lebesgue},
     pages = {1023--1048},
     publisher = {\'ENS Rennes},
     volume = {3},
     year = {2020},
     doi = {10.5802/ahl.53},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.53/}
}
TY  - JOUR
AU  - Chhaibi, Reda
AU  - Ekren, Ibrahim
TI  - A Hörmander condition for delayed stochastic differential equations
JO  - Annales Henri Lebesgue
PY  - 2020
SP  - 1023
EP  - 1048
VL  - 3
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.53/
DO  - 10.5802/ahl.53
LA  - en
ID  - AHL_2020__3__1023_0
ER  - 
%0 Journal Article
%A Chhaibi, Reda
%A Ekren, Ibrahim
%T A Hörmander condition for delayed stochastic differential equations
%J Annales Henri Lebesgue
%D 2020
%P 1023-1048
%V 3
%I ÉNS Rennes
%U http://archive.numdam.org/articles/10.5802/ahl.53/
%R 10.5802/ahl.53
%G en
%F AHL_2020__3__1023_0
Chhaibi, Reda; Ekren, Ibrahim. A Hörmander condition for delayed stochastic differential equations. Annales Henri Lebesgue, Volume 3 (2020), pp. 1023-1048. doi : 10.5802/ahl.53. http://archive.numdam.org/articles/10.5802/ahl.53/

[Bel04] Bell, Denis R. Stochastic differential equations and hypoelliptic operators, Real and stochastic analysis (Trends in Mathematics), Birkhäuser, 2004, pp. 9-42 | DOI | MR | Zbl

[BM91] Bell, Denis R.; Mohammed, Salah-Eldin A. The Malliavin calculus and stochastic delay equations, J. Funct. Anal., Volume 99 (1991) no. 1, pp. 75-99 | DOI | MR | Zbl

[BM95] Bell, Denis R.; Mohammed, Salah-Eldin A. Smooth densities for degenerate stochastic delay equations with hereditary drift, Ann. Probab., Volume 23 (1995) no. 4, pp. 1875-1894 | DOI | MR | Zbl

[CF10] Cass, Thomas; Friz, Peter K. Densities for rough differential equations under Hörmander’s condition, Ann. Math., Volume 171 (2010) no. 3, pp. 2115-2141 | DOI | Zbl

[CHLT15] Cass, Thomas; Hairer, Martin; Litterer, Christian; Tindel, Samy Smoothness of the density for solutions to Gaussian rough differential equations, Ann. Probab., Volume 43 (2015) no. 1, pp. 188-239 | DOI | MR | Zbl

[Con16] Cont, Rama Pathwise calculus for non-anticipative functionals, Stochastic Integration by Parts and Functional Itô Calculus (Utzet, Frederic; Vives, Josep, eds.) (Advanced Courses in Mathematics – CRM Barcelona), Springer, 2016, pp. 125-152 | DOI | Zbl

[FH14] Friz, Peter K.; Hairer, Martin A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014 | DOI | Zbl

[Hai11] Hairer, Martin On Malliavin’s proof of Hörmander’s theorem, Bull. Sci. Math., Volume 135 (2011) no. 6-7, pp. 650-666 | DOI | MR | Zbl

[HP13] Hairer, Martin; Pillai, Natesh S. Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths, Ann. Probab., Volume 41 (2013) no. 4, pp. 2544-2598 | DOI | MR | Zbl

[Hsu02] Hsu, Elton P. Stochastic analysis on manifolds, Graduate Studies in Mathematics, 38, American Mathematical Society, 2002 | DOI | MR | Zbl

[Hör67] Hörmander, Lars Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967) no. 1, pp. 147-171 | DOI | MR | Zbl

[KM97] Kriegl, Andreas; Michor, Peter W The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, 1997 | MR | Zbl

[KS84] Kusuoka, Shigeo; Stroock, Daniel W. Applications of the Malliavin calculus, Part I, Stochastic analysis (Katata/Kyoto, 1982) (North-Holland Mathematical Library), Volume 32, North-Holland, 1984, pp. 271-306 | Zbl

[Kun84] Kunita, Hiroshi Stochastic differential equations and stochastic flows of diffeomorphisms, École d’été de probabilités de Saint-Flour, XII—1982 (Hennequin, P. L., ed.) (Lecture Notes in Mathematics), Volume 1097, Springer, 1984, pp. 143-303 | DOI | MR

[Kun97] Kunita, Hiroshi Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, 1997 | MR | Zbl

[Lej12] Lejay, Antoine Global solutions to rough differential equations with unbounded vector fields, Séminaire de probabilités XLIV, Springer, 2012, pp. 215-246 | DOI | Zbl

[LS01] Liptser, Robert S.; Shiryaev, Albert N. Statistics of random processes. I. General theory, Applications of Mathematics, 5, Springer, 2001 (translated from the 1974 Russian original by A. B. Aries, Stochastic Modelling and Applied Probability) | Zbl

[NNT08] Neuenkirch, Andreas; Nourdin, Ivan; Tindel, Samy Delay equations driven by rough paths, Electron. J. Probab., Volume 13 (2008) no. 67, pp. 2031-2068 | DOI | MR | Zbl

[NP88] Nualart, David; Pardoux, Étienne Stochastic calculus with anticipating integrands, Probab. Theory Relat. Fields, Volume 78 (1988) no. 4, pp. 535-581 | DOI | MR | Zbl

[Nua95] Nualart, David The Malliavin calculus and related topics, Probability and Its Applications, Springer, 1995 | Zbl

[OP89] Ocone, Daniel; Pardoux, Étienne A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 25 (1989) no. 1, pp. 39-71 | Numdam | Zbl

[Sto98] Stoica, Gheorghe Regular delay Langevin equation with degenerate diffusion coefficient, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. (1998), pp. 289-294 | Zbl

[Str83] Stroock, Daniel W. Some applications of stochastic calculus to partial differential equations, École d’Été de Probabilités de Saint-Flour XI—1981 (Lecture Notes in Mathematics), Volume 976, Springer, 1983, pp. 267-382 | MR | Zbl

[Tak07] Takeuchi, Atsushi Malliavin calculus for degenerate stochastic functional differential equations, Acta Appl. Math., Volume 97 (2007) no. 1-3, pp. 281-295 | DOI | MR | Zbl

Cited by Sources: