We study a Schrödinger equation which describes the dynamics of an electron in a crystal in the presence of impurities. We consider the regime of small wave-lengths comparable to the characteristic scale of the crystal. It is well-known that under suitable assumptions on the initial data and for highly oscillating potential, the wave function can be approximated by the solution of a simpler equation, the effective mass equation. Using Floquet–Bloch decomposition, as it is classical in this subject, we establish effective mass equations in a rather general setting. In particular, Bloch bands are allowed to have degenerate critical points, as may occur in dimension strictly larger than one. Our analysis leads to a new type of effective mass equations which are operator-valued and of Heisenberg form and relies on Wigner measure theory and, more precisely, to its applications to the analysis of dispersion effects.
Nous étudions une équation de Schrödinger qui décrit la dynamique d’un électron dans un crystal en présence d’impuretés et nous considérons des longueurs d’onde de la taille des cellules du crystal. Lorsque la donnée initiale satisfait à des hypothèses ad-hoc, il est bien connu que l’on peut rendre compte des propriétés de la fonction d’onde en considérant la solution d’une équation de Schrödinger plus simple, appelée équation de masse effective. En utilisant la décomposition de Floquet–Bloch, comme il est classique dans ce domaine, nous exhibons des équations de masse effective dans un cadre plus général que dans les travaux antérieurs, en autorisant notamment des dégénérescences des points critiques des bandes de Bloch (ce qui ne peut arriver qu’en dimension plus grande que 1). Notre analyse repose sur l’utilisation des mesures de Wigner et leur application à l’analyse de la dispersion dans des edp-s et aboutit à l’introduction d’équations de masse effective de type Heisenberg.
Revised:
Accepted:
Published online:
Keywords: Bloch modes, semi-classical analysis on manifolds, Wigner measures, two-microlocal measures, Effective mass theory
@article{AHL_2020__3__1049_0, author = {Chabu, Victor and Fermanian Kammerer, Clotilde and Maci\`a, Fabricio}, title = {Wigner measures and effective mass theorems}, journal = {Annales Henri Lebesgue}, pages = {1049--1089}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.54}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.54/} }
TY - JOUR AU - Chabu, Victor AU - Fermanian Kammerer, Clotilde AU - Macià, Fabricio TI - Wigner measures and effective mass theorems JO - Annales Henri Lebesgue PY - 2020 SP - 1049 EP - 1089 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.54/ DO - 10.5802/ahl.54 LA - en ID - AHL_2020__3__1049_0 ER -
%0 Journal Article %A Chabu, Victor %A Fermanian Kammerer, Clotilde %A Macià, Fabricio %T Wigner measures and effective mass theorems %J Annales Henri Lebesgue %D 2020 %P 1049-1089 %V 3 %I ÉNS Rennes %U http://archive.numdam.org/articles/10.5802/ahl.54/ %R 10.5802/ahl.54 %G en %F AHL_2020__3__1049_0
Chabu, Victor; Fermanian Kammerer, Clotilde; Macià, Fabricio. Wigner measures and effective mass theorems. Annales Henri Lebesgue, Volume 3 (2020), pp. 1049-1089. doi : 10.5802/ahl.54. http://archive.numdam.org/articles/10.5802/ahl.54/
[AFKM15] Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures, Am. J. Math., Volume 137 (2015) no. 3, pp. 577-638 | DOI | MR | Zbl
[AG07] Pseudo-differential operators and the Nash–Moser theorem, Graduate Studies in Mathematics, 82, American Mathematical Society, 2007 (translated from the 1991 French original by Stephen S. Wilson) | MR | Zbl
[ALM16] Winger measures and observability for the Schrödinger equation on the disk, Invent. Math., Volume 206 (2016) no. 2, pp. 485-599 | DOI | Zbl
[AM12] The dynamics of the Schrödinger flow from the point of view of semiclassical measures, Spectral geometry (Proceedings of Symposia in Pure Mathematics), Volume 84, American Mathematical Society, 2012, pp. 93-116 (based on the international conference, Dartmouth, NH, USA, July 19–23, 2010) | DOI | Zbl
[AM14] Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc., Volume 16 (2014) no. 6, pp. 1253-1288 | DOI | Zbl
[AP05] Homogenization of the Schrödinger equation and effective mass theorems, Commun. Math. Phys., Volume 258 (2005) no. 1, pp. 1-22 | DOI | Zbl
[AP06] Localization for the Schrödinger equation in a locally periodic medium, SIAM J. Math. Anal., Volume 38 (2006) no. 1, pp. 127-142 | DOI | Zbl
[AR12] Dispersion and controllability for the Schrödinger equation on negatively curved manifolds, Anal. PDE, Volume 5 (2012) no. 2, pp. 313-338 | DOI | Zbl
[BBA11] Quantum transport in crystals: effective mass theorem and kp Hamiltonians, Commun. Math. Phys., Volume 307 (2011) no. 3, pp. 567-607 | DOI | MR | Zbl
[Blo28] Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys., Volume 52 (1928), pp. 555-600 | DOI | Zbl
[BLP78] Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, 5, North-Holland, 1978 | MR | Zbl
[BMP01] Semiclassical limit for the Schrödinger–Poisson equation in a crystal, Commun. Pure Appl. Math., Volume 54 (2001) no. 7, pp. 851-890 | DOI | Zbl
[CFKM19] Semiclassical analysis of dispersion phenomena, Analysis and partial differential equations: perspectives from developing countries (Springer Proceedings in Mathematics & Statistics), Volume 275, springer, 2019, pp. 84-108 | MR | Zbl
[CS12] Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials, Discrete Contin. Dyn. Syst., Volume 17 (2012) no. 3, pp. 759-774 | Zbl
[CV71] On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, Volume 23 (1971), pp. 374-378 | DOI | MR
[DGR06] Gaussian beam construction for adiabatic perturbations, Math. Phys. Anal. Geom., Volume 9 (2006) no. 3, pp. 187-201 | DOI | MR
[DS99] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999 | MR | Zbl
[FK95] Équation de la chaleur et Mesures semi-classiques, Ph. D. Thesis, Université Paris-Sud, Orsay, France (1995)
[FK00] Mesures semi-classiques 2-microlocales, C. R. Math. Acad. Sci. Paris, Volume 331 (2000) no. 7, pp. 515-518 | DOI | MR | Zbl
[FK05] Analyse à deux échelles d’une suite bornée de sur une sous-variété du cotangent, C. R. Math. Acad. Sci. Paris, Volume 340 (2005) no. 4, pp. 269-274 | DOI | MR | Zbl
[FK14] Opérateurs pseudo-différentiels semi-classiques, Chaos en mécanique quantique. Journées mathématiques X-UPS 2014, Éditions de l’École polytechnique, 2014, pp. 53-100 | Zbl
[Flo83] Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. Éc. Norm. Supér., Volume 12 (1883), pp. 47-88 | DOI | Numdam | Zbl
[Fol89] Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, 1989 | MR | Zbl
[GL93] Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | MR | Zbl
[GMMP97] Homogenization limits and Wigner transforms, Commun. Pure Appl. Math., Volume 50 (1997) no. 4, pp. 323-379 | DOI | MR | Zbl
[GMS91] A mathematical approach to the effective Hamiltonian in perturbed periodic problems, Commun. Math. Phys., Volume 142 (1991) no. 2, pp. 217-244 | DOI | MR
[Gér91a] Mesures semi-classiques et ondes de Bloch, Séminaire Équations aux dérivées partielles (Polytechnique) (1991), Exp. No. XVI, 19 pages | Numdam | Zbl
[Gér91b] Microlocal defect measures, Commun. Partial Differ. Equations, Volume 16 (1991) no. 11, pp. 1761-1794 | DOI | MR | Zbl
[Hir94] Differential topology, Graduate Texts in Mathematics, 33, Springer, 1994 (corrected reprint of the 1976 original.) | MR
[HST01] Semiclassical limit for the Schrödinger equation with a short scale periodic potential, Commun. Math. Phys., Volume 215 (2001) no. 3, pp. 609-629 | DOI | Zbl
[HW11] Defect modes and homogenization of periodic Schrödinger operators, SIAM J. Math. Anal., Volume 43 (2011) no. 2, pp. 971-996 | DOI | Zbl
[Kuc01] The mathematics of photonic crystals, Mathematical modeling in optical science. Proceedings of a minisymposium on optics at SIAM’s annual meeting, Stanford Univ., Palo Alto, CA, USA, 1997 (Frontiers in Applied Mathematics), Volume 22, Society for Industrial and Applied Mathematics, 2001, pp. 207-272 | MR | Zbl
[Kuc04] On some spectral problems of mathematical physics, Partial differential equations and inverse problems. Proceedings of the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems, Santiago, Chile, January 6–18, 2003 (Contemporary Mathematics), Volume 362, American Mathematical Society, 2004, pp. 241-276 | MR | Zbl
[Kuc16] An overview of periodic elliptic operators, Bull. Am. Math. Soc., Volume 53 (2016) no. 3, pp. 343-414 | DOI | MR | Zbl
[Lew17] Éléments de théorie spectrale: le Laplacien sur un ouvert borné, 2017 (class notes, Master. CEntre de REcherche en MAthématiques de la DEcision, Université Paris Dauphine, France)
[LK55] Motion of electrons and holes in perturbed periodic fields, Phys. Rev., II. Ser., Volume 97 (1955), pp. 869-883
[LP93] Sur les mesures de Wigner, Rev. Mat. Iberoam., Volume 9 (1993) no. 3, pp. 553-618 | DOI | MR | Zbl
[Mac09] Semiclassical measures and the Schrödinger flow on Riemannian manifolds, Nonlinearity, Volume 22 (2009) no. 5, pp. 1003-1020 | DOI | MR | Zbl
[Mac10] High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal., Volume 258 (2010) no. 3, pp. 933-955 | DOI | Zbl
[Mac11] The Schrödinger flow on a compact manifold: High-frequency dynamics and dispersion, Modern Aspects of the Theory of Partial Differential Equations (Operator Theory: Advances and Application), Volume 216, Birkhäuser, 2011, pp. 275-289 | DOI | MR | Zbl
[Mac15] High-frequency dynamics for the Schrödinger equation, with applications to dispersion and observability, Nonlinear optical and atomic systems. At the interface of physics and mathematics (Lecture Notes in Mathematics), Volume 2146, Springer, 2015, pp. 275-335 (based on lecture notes given at the 2013 Painlevé-CEMPI-PhLAM thematic semester) | DOI | MR | Zbl
[Mar02] An introduction to semiclassical and microlocal analysis, Universitext, Springer, 2002 | Zbl
[MR16] Concentration and non-concentration for the Schrödinger evolution on Zoll manifolds, Commun. Math. Phys., Volume 345 (2016) no. 3, pp. 1019-1054 | DOI | Zbl
[MR18] Two-microlocal regularity of quasimodes on the torus, Anal. PDE, Volume 11 (2018) no. 8, pp. 2111-2136 | DOI | MR | Zbl
[Out87] Comportement semi-classique pour l’opérateur de Schrödinger à potentiel périodique, J. Funct. Anal., Volume 72 (1987) no. 1, pp. 65-93 | DOI | MR
[PR96] Semi-classical limits in a crystal with exterior potentials and effective mass theorems, Commun. Partial Differ. Equations, Volume 21 (1996) no. 11-12, pp. 1897-1918 | DOI | MR | Zbl
[PST03] Effective dynamics for Bloch electrons: Peierls substitution and beyond, Commun. Math. Phys., Volume 242 (2003) no. 3, pp. 547-578 | DOI | MR | Zbl
[RS78] Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978 | Zbl
[Wil78] Theory of Bloch waves, J. Anal. Math., Volume 33 (1978), pp. 146-167 | DOI | MR | Zbl
[Zwo12] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | MR | Zbl
Cited by Sources: