We construct a semi-orthogonal decomposition on the category of perfect complexes on the blow-up of a derived Artin stack in a quasi-smooth centre. This gives a generalization of Thomason’s blow-up formula in algebraic K-theory to derived stacks. We also provide a new criterion for descent in Voevodsky’s cdh topology, which we use to give a direct proof of Cisinski’s theorem that Weibel’s homotopy invariant K-theory satisfies cdh descent.
Nous construisons une décomposition semi-orthogonale sur la catégorie des complexes parfaits sur l’éclaté d’un champ d’Artin dérivé le long d’un centre quasi-lisse. Ceci conduit à une généralisation de la formule d’éclatement de Thomason en K-théorie algébrique à une situation dérivée. Nous établissons aussi un nouveau critère de descente pour la topologie cdh de Voevodsky, que nous utilisons pour donner une démonstration directe d’un thèorème de Cisinski qui affirme que la K-théorie invariante par homotopie de Weibel satisfait la descente cdh.
Revised:
Accepted:
Published online:
Keywords: derived algebraic geometry, semi-orthogonal decompositions, algebraic K-theory, cdh descent
@article{AHL_2020__3__1091_0, author = {Khan, Adeel A.}, title = {Algebraic {K-theory} of quasi-smooth blow-ups and cdh descent}, journal = {Annales Henri Lebesgue}, pages = {1091--1116}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.55}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.55/} }
Khan, Adeel A. Algebraic K-theory of quasi-smooth blow-ups and cdh descent. Annales Henri Lebesgue, Volume 3 (2020), pp. 1091-1116. doi : 10.5802/ahl.55. http://archive.numdam.org/articles/10.5802/ahl.55/
[BGI71] Séminaire de Géométrie Algébrique du Bois Marie – 1966-67 – Théorie des intersections et théorème de Riemann–Roch – (SGA 6), Lecture Notes in Mathematics, 225, Springer, 1971 | Zbl
[BGT13] A universal characterization of higher algebraic K-theory, Geom. Topol., Volume 17 (2013) no. 2, pp. 733-838 | DOI | MR | Zbl
[BK89] Representable functors, Serre functors, and mutations, Izv. Ross. Akad. Nauk SSSR, Ser. Mat., Volume 53 (1989) no. 6, pp. 1183-1205
[BM12] Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol., Volume 16 (2012) no. 2, pp. 1053-1120 | DOI | MR | Zbl
[BS20] Conservative descent for semi-orthogonal decompositions, Adv. Math., Volume 360 (2020), 106882, p. 39 | MR | Zbl
[BVdB03] Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[Cis13] Descente par éclatements en K-théorie invariante par homotopie, Ann. Math., Volume 177 (2013) no. 2, pp. 425-448 | DOI | Zbl
[GR17] A Study in Derived Algebraic Geometry: Volumes I and II, Mathematical Surveys and Monographs, 221.1-221.2, American Mathematical Society, 2017 | Zbl
[Hae04] Descent properties of homotopy K-theory, Duke Math. J., Volume 125 (2004) no. 3, pp. 589-619 | DOI | MR | Zbl
[HK19] Vanishing theorems for the negative K-theory of stacks, Ann. K-Theory, Volume 4 (2019) no. 3, pp. 439-472 | DOI | MR | Zbl
[HLP14] Mapping stacks and categorical notions of properness (2014) (https://arxiv.org/abs/1402.3204)
[Hoy16] Cdh descent in equivariant homotopy K-theory (2016) (https://arxiv.org/abs/1604.06410) | Zbl
[HR17] Perfect complexes on algebraic stacks, Compos. Math., Volume 153 (2017) no. 11, pp. 2318-2367 | DOI | MR | Zbl
[Kha16] Motivic homotopy theory in derived algebraic geometry, Ph. D. Thesis, Universität Duisburg-Essen, Germany (2016) (Available at https://www.preschema.com/thesis/)
[Kha19] The Morel–Voevodsky localization theorem in spectral algebraic geometry, Geom. Topol., Volume 23 (2019) no. 7, pp. 3647-3685 | DOI | MR | Zbl
[KR18a] Virtual Cartier divisors and blow-ups (2018) (https://arxiv.org/abs/1802.05702)
[KR18b] Algebraic K-theory of quotient stacks, Ann. K-Theory, Volume 3 (2018) no. 2, pp. 207-233 | DOI | MR | Zbl
[KST18] Algebraic K-theory and descent for blow-ups, Invent. Math., Volume 211 (2018) no. 2, pp. 523-577 | DOI | MR | Zbl
[LT18] On the K-theory of pullbacks (2018) (https://arxiv.org/abs/1808.05559) | Zbl
[Lur09] Higher topos theory, Annals of Mathematics Studies, Princeton University Press, 2009 no. 170 | MR | Zbl
[Lur12] Higher algebra, 2012 (Preprint, version of 2017-09-18 available at https://www.math.ias.edu/~lurie/papers/HA.pdf)
[Lur16] Spectral algebraic geometry (2016) (Preprint, version of 2018-02-03, available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf)
[MV99] -homotopy theory of schemes, Publ. Math., Inst. Hautes Étud. Sci., Volume 90 (1999) no. 1, pp. 45-143 | DOI | Numdam | Zbl
[Orl92] Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 56 (1992) no. 4, pp. 852-862 | Zbl
[RG71] Critères de platitude et de projectivité: Techniques de « platification » d’un module, Invent. Math., Volume 13 (1971) no. 1-2, pp. 1-89 | DOI | Zbl
[Tho87] Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. Math., Volume 65 (1987) no. 1, pp. 16-34 | DOI | MR | Zbl
[Tho93a] Les -groupes d’un fibré projectif, Algebraic -theory and algebraic topology (Lake Louise. Proceedings of the NATO Advanced Study Institute, Lake Louise, Alberta, Canada, December 12–16, 1991 (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 407, Kluwer Academic Publishers, 1993, pp. 243-248 | MR
[Tho93b] Les -groupes d’un schéma éclaté et une formule d’intersection excédentaire, Invent. Math., Volume 112 (1993) no. 1, pp. 195-215 | DOI | Zbl
[TT90] Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift. Vol. III (Progress in Mathematics), Volume 88, Springer, 1990, pp. 247-435 | DOI | MR | Zbl
[TV08] Homotopical algebraic geometry II: Geometric stacks and applications, 902, American Mathematical Society, 2008
[Voe10a] Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra, Volume 214 (2010) no. 8, pp. 1384-1398 | DOI | MR | Zbl
[Voe10b] Unstable motivic homotopy categories in Nisnevich and cdh-topologies, J. Pure Appl. Algebra, Volume 214 (2010) no. 8, pp. 1399-1406 | DOI | MR | Zbl
[Wei89] Homotopy algebraic K-theory, Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987) (Contemporary Mathematics), Volume 83, American Mathematical Society, 1989, pp. 461-488 | DOI | MR | Zbl
Cited by Sources: