Consider a cubic surface satisfying the mild condition that it may be described in Sylvester’s pentahedral form. There is a well-known Enriques or Coble surface with K3 cover birationally isomorphic to the Hessian surface of this cubic surface. We describe the nef cone and -curves of . In the case of pentahedral parameters we compute the automorphism group of . For it is the semidirect product of the free product and the symmetric group . In the special case we study the action of on an invariant smooth rational curve on the Coble surface . We describe the action and its image, both geometrically and arithmetically. In particular, we prove that is injective in characteristic and we identify its image with the subgroup of coming from the isometries of a regular tetrahedron and the reflections across its facets.
Donnons-nous une surface cubique et faisons l’hypothèse, faible, que cette surface peut être décrite sous forme pentaèdrique de Sylvester. Il est bien connu que l’on peut trouver une surface de Enriques ou de Coble dont un revêtement double est une surface K3 birationnellement isomorphe à la hessienne de cette surface cubique. Nous décrivons le cône nef et les -courbes de . Si les paramètres pentaèdriques sont nous calculons le groupe d’automorphismes de . Lorsque , c’est le produit semi-direct du produit libre et du groupe symétrique . Dans le cas particulier nous étudions l’action de sur une courbe rationnelle, lisse et invariante de la surface de Coble . Nous décrivons l’action et son image, de manière géométrique et arithmétique à la fois. En particulier, nous montrons que l’homomorphisme est injectif en caractéristique et nous identifions son image au sous-groupe de associé aux isométries d’un tétraèdre régulier et aux réflexions le long de ses faces.
Revised:
Accepted:
Published online:
Keywords: Enriques surfaces, Coble surfaces, Automorphism groups, Hyperbolic geometry
@article{AHL_2020__3__1133_0, author = {Allcock, Daniel and Dolgachev, Igor}, title = {The tetrahedron and automorphisms of {Enriques} and {Coble} surfaces of {Hessian} type}, journal = {Annales Henri Lebesgue}, pages = {1133--1159}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.57}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.57/} }
TY - JOUR AU - Allcock, Daniel AU - Dolgachev, Igor TI - The tetrahedron and automorphisms of Enriques and Coble surfaces of Hessian type JO - Annales Henri Lebesgue PY - 2020 SP - 1133 EP - 1159 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.57/ DO - 10.5802/ahl.57 LA - en ID - AHL_2020__3__1133_0 ER -
%0 Journal Article %A Allcock, Daniel %A Dolgachev, Igor %T The tetrahedron and automorphisms of Enriques and Coble surfaces of Hessian type %J Annales Henri Lebesgue %D 2020 %P 1133-1159 %V 3 %I ÉNS Rennes %U http://archive.numdam.org/articles/10.5802/ahl.57/ %R 10.5802/ahl.57 %G en %F AHL_2020__3__1133_0
Allcock, Daniel; Dolgachev, Igor. The tetrahedron and automorphisms of Enriques and Coble surfaces of Hessian type. Annales Henri Lebesgue, Volume 3 (2020), pp. 1133-1159. doi : 10.5802/ahl.57. http://archive.numdam.org/articles/10.5802/ahl.57/
[Bou81] Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Élements de Mathématique, Masson, 1981 | Zbl
[CD89] Enriques surfaces. I., Progress in Mathematics, 76, Birkhäuser, 1989 | MR | Zbl
[Cob39] Cremona transformations with an invariant rational sextic, Bull. Am. Math. Soc., Volume 45 (1939) no. 4, pp. 285-288 | DOI | MR | Zbl
[Cob82] Algebraic geometry and theta functions, Colloquium Publications, 10, American Mathematical Society, 1982 (reprint of the 1929 edition) | MR
[DO19] A surface with discrete and non-finitely generated automorphism group, Duke Math. J., Volume 168 (2019) no. 6, pp. 941-966 | DOI | Zbl
[Dol08] Reflection groups in algebraic geometry, Bull. Am. Math. Soc., Volume 45 (2008) no. 1, pp. 1-60 | DOI | MR | Zbl
[Dol12] Classical algebraic geometry. A modern view, Cambridge University Press, 2012 | Zbl
[Dol16] A brief introduction to Enriques surfaces, Development of moduli theory, Kyoto 2013 (Advanced Studies in Pure Mathematics), Volume 69, Mathematical Society of Japan (2016), pp. 1-32 | MR | Zbl
[Dol18] Salem numbers and Enriques surfaces, Exp. Math., Volume 27 (2018) no. 3, pp. 287-301 | DOI | MR | Zbl
[DZ01] Coble rational surfaces, Am. J. Math., Volume 123 (2001) no. 1, pp. 79-114 | DOI | MR | Zbl
[Kon86] Enriques surfaces with finite automorphism groups, Jap. J. Math., Volume 12 (1986) no. 2, pp. 191-282 | DOI | MR | Zbl
[Lei18] A projective variety with discrete, non-finitely generated automorphism group, Invent. Math., Volume 212 (2018) no. 1, pp. 189-211 | DOI | MR | Zbl
[Mas88] Kleinian Groups, Grundlehren der Mathematischen Wissenschaften, 287, Springer, 1988 | MR | Zbl
[MO15] The automorphism groups of Enriques surfaces covered by symmetric quartic surfaces, Recent advances in algebraic geometry (London Mathematical Society Lecture Note Series), Volume 417, Cambridge University Press, 2015, pp. 307-320 | DOI | MR | Zbl
[Sch02] Lucy and Lily: A Game of Geometry and Number Theory, Am. Math. Mon., Volume 109 (2002) no. 1, pp. 13-20 | DOI | Zbl
[Ser03] Trees, Springer Monographs in Mathematics, Springer, 2003 | Zbl
[Shi19] On an Enriques surface associated with a quartic Hessian surface, Can. J. Math., Volume 71 (2019) no. 1, pp. 213-246 | DOI | MR | Zbl
[Sil09] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009 | MR | Zbl
[Vin71] Discrete linear groups generated by reflections, Math. USSR, Izv., Volume 5 (1971) no. 5, pp. 1083-1119 | DOI
[Vin72] On the groups of unit elements of certain quadratic forms, Math. USSR, Sb., Volume 16 (1972), pp. 17-35 | DOI | Zbl
Cited by Sources: