Spectral analysis of polygonal cavities containing a negative-index material
Annales Henri Lebesgue, Volume 3 (2020), pp. 1161-1193.

The purpose of this paper is to investigate the spectral effects of an interface between vacuum and a negative-index material (NIM), that is, a dispersive material whose electric permittivity and magnetic permeability become negative in some frequency range. We consider here an elementary situation, namely, 1) the simplest existing model of NIM: the non dissipative Drude model, for which negativity occurs at low frequencies; 2) a two-dimensional scalar model derived from the complete Maxwell’s equations; 3) the case of a simple bounded cavity: a polygonal domain partially filled with a portion of Drude material. Because of the frequency dispersion (the permittivity and permeability depend on the frequency), the spectral analysis of such a cavity is unusual since it yields a nonlinear eigenvalue problem. Thanks to the use of an additional unknown, we linearize the problem and we present a complete description of the spectrum. We show in particular that the interface between the NIM and vacuum is responsible for various resonance phenomena related to various components of an essential spectrum.

L’objet de cet article est d’étudier les effets spectraux d’une interface entre le vide et un matériau à indice négatif (NIM), c’est-à-dire un matériau dispersif dont la permittivité électrique et la perméabilité magnétique deviennent négatives dans une certaine gamme de fréquences. Nous considérons ici une situation élémentaire, à savoir, 1) un modèle très simple de NIM : le modèle de Drude non dissipatif, pour lequel la négativité se produit à basse fréquence ; 2) une équation de propagation scalaire bidimensionnelle déduite des équations de Maxwell ; 3) le cas d’une cavité bornée occupant un domaine polygonal partiellement rempli d’une portion de matériau Drude. En raison de la dispersion fréquentielle (la permittivité et la perméabilité dépendent de la fréquence), l’analyse spectrale d’une telle cavité conduit à un problème aux valeurs propres non linéaire. Grâce à l’utilisation d’une inconnue supplémentaire, nous linéarisons le problème et nous présentons une description complète du spectre. Nous montrons en particulier que l’interface entre le NIM et le vide est à l’origine de divers phénomènes de résonance liés aux différentes composantes d’un spectre essentiel.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ahl.58
Classification: 35P05, 35P30, 35Q60, 47A10, 78A25
Keywords: dispersion, Drude model, essential spectrum, resonance
Hazard, Christophe 1; Paolantoni, Sandrine 1

1 POEMS (UMR 7231: CNRS / ENSTA-Paris / INRIA), ENSTA-Paris, Institut Polytechnique de Paris, 828 boulevard des Maréchaux, 91120 Palaiseau, (France)
@article{AHL_2020__3__1161_0,
     author = {Hazard, Christophe and Paolantoni, Sandrine},
     title = {Spectral analysis of polygonal cavities containing a negative-index material},
     journal = {Annales Henri Lebesgue},
     pages = {1161--1193},
     publisher = {\'ENS Rennes},
     volume = {3},
     year = {2020},
     doi = {10.5802/ahl.58},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.58/}
}
TY  - JOUR
AU  - Hazard, Christophe
AU  - Paolantoni, Sandrine
TI  - Spectral analysis of polygonal cavities containing a negative-index material
JO  - Annales Henri Lebesgue
PY  - 2020
SP  - 1161
EP  - 1193
VL  - 3
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.58/
DO  - 10.5802/ahl.58
LA  - en
ID  - AHL_2020__3__1161_0
ER  - 
%0 Journal Article
%A Hazard, Christophe
%A Paolantoni, Sandrine
%T Spectral analysis of polygonal cavities containing a negative-index material
%J Annales Henri Lebesgue
%D 2020
%P 1161-1193
%V 3
%I ÉNS Rennes
%U http://archive.numdam.org/articles/10.5802/ahl.58/
%R 10.5802/ahl.58
%G en
%F AHL_2020__3__1161_0
Hazard, Christophe; Paolantoni, Sandrine. Spectral analysis of polygonal cavities containing a negative-index material. Annales Henri Lebesgue, Volume 3 (2020), pp. 1161-1193. doi : 10.5802/ahl.58. http://archive.numdam.org/articles/10.5802/ahl.58/

[ACK + 13] Ammari, Habib; Ciraolo, Giulio; Kang, Hyeonbae; Lee, Hyundae; Milton, Graeme W. Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal., Volume 208 (2013) no. 2, pp. 667-692 | DOI | Zbl

[AK16] Ando, Kazunori; Kang, Hyeonbae Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann–Poincaré operator, J. Math. Anal. Appl., Volume 435 (2016) no. 1, pp. 162-178 | DOI | Zbl

[AL95] Adamjan, Vadym M.; Langer, Heinz Spectral properties of a class of rational operator valued functions, J. Oper. Theory, Volume 33 (1995) no. 2, pp. 259-277 | MR | Zbl

[AMRZ17] Ammari, Habib; Millien, Pierre; Ruiz, Matias; Zhang, Hai Mathematical analysis of plasmonic nanoparticles: the scalar case, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 2, pp. 597-658 | DOI | MR | Zbl

[BCC12] Bonnet-Ben Dhia, Anne-Sophie; Chesnel, Lucas; Ciarlet Jr., Patrick T-coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 6, pp. 1363-1387 | Numdam | MR | Zbl

[BCC14a] Bonnet-Ben Dhia, Anne-Sophie; Chesnel, Lucas; Ciarlet Jr., Patrick T-coercivity for the Maxwell problem with sign-changing coefficients, Comm. Part. Diff. Eq., Volume 39 (2014) no. 6, pp. 1007-1031 | MR | Zbl

[BCC14b] Bonnet-Ben Dhia, Anne-Sophie; Chesnel, Lucas; Ciarlet Jr., Patrick Two-dimensional Maxwell’s equations with sign-changing coefficients, Appl. Numer. Math., Volume 79 (2014), pp. 29-41 | DOI | MR

[BCCC16] Bonnet-Ben Dhia, Anne-Sophie; Carvalho, Camille; Chesnel, Lucas; Ciarlet Jr., Patrick On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients, J. Comput. Phys., Volume 322 (2016), pp. 224-247 | DOI | MR | Zbl

[BDR99] Bonnet-Ben Dhia, Anne-Sophie; Dauge, Monique; Ramdani, Karim Analyse spectrale et singularités d’un problème de transmission non coercif, C. R. Acad. Sci. Paris, Série I, Math., Volume 328 (1999) no. 8, pp. 717-720 | DOI

[BGD16] Brûlé, Yoann; Gralak, Boris; Demésy, Guillaume Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals, J. Opt. Soc. Am. B, Volume 33 (2016) no. 4, pp. 691-702 | DOI

[BGK79] Bart, Harm; Gohberg, Israel; Kaashoek, Marinus A. Minimal Factorization of Matrix and Operator Functions, Operator Theory: Advances and Applications, 1, Birkhäuser, 1979 | MR

[BZ19] Bonnetier, Eric; Zhang, Hai Characterization of the essential spectrum of the Neumann–Poincaré operator in 2D domains with corner via Weyl sequences, Rev. Mat. Iberoam., Volume 35 (2019) no. 3, pp. 925-948 | DOI | Zbl

[CHJ17] Cassier, Maxence; Hazard, Christophe; Joly, Patrick Spectral theory for Maxwell’s equations at the interface of a metamaterial. Part I: Generalized Fourier transform, Commun. Part. Differ. Equations, Volume 42 (2017) no. 11, pp. 1707-1748 | DOI | MR | Zbl

[CJK17] Cassier, Maxence; Joly, Patrick; Kachanovska, Maryna Mathematical models for dispersive electromagnetic waves: an overview, Comput. Math. Appl., Volume 74 (2017) no. 11, pp. 2792-2830 | DOI | MR | Zbl

[CMM12] Cocquet, Pierre-Henri; Mazet, Pierre-Alain; Mouysset, Vincent On the existence and uniqueness of a solution for some frequency-dependent partial differential equations coming from the modeling of metamaterials, SIAM J. Math. Anal., Volume 44 (2012) no. 6, pp. 3806-3833 | DOI | MR | Zbl

[CPP19] Cacciapuoti, Claudio; Pankrashkin, Konstantin; Posilicano, Andrea Self-adjoint indefinite Laplacians, J. Anal. Math., Volume 139 (2019) no. 1, pp. 155-177 | DOI | MR | Zbl

[CS85] Costabel, Martin; Stephan, Ernst A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., Volume 106 (1985), pp. 367-413 | DOI | MR | Zbl

[EE87] Edmunds, David Eric; Evans, William Desmond Spectral Theory and Differential Operators, Oxford Mathematical Monographs, Oxford University Press, 1987

[ELT17] Engström, Christian; Langer, Heinz; Tretter, Christiane Rational eigenvalue problems and applications to photonic crystals, J. Math. Anal. Appl., Volume 445 (2017) no. 1, pp. 240-279 | DOI | MR | Zbl

[FS07] Figotin, Alexander; Schenker, Jeffrey H. Hamiltonian treatment of time dispersive and dissipative media within the linear response theory, J. Comput. Appl. Math., Volume 204 (2007) no. 2, pp. 199-208 | DOI | MR | Zbl

[GM12] Gralak, Boris; Maystre, Daniel Negative index materials and time-harmonic electromagnetic field, C.R. Physique, Volume 13 (2012) no. 8, pp. 786-799 | DOI

[Gri14] Grieser, Daniel The plasmonic eigenvalue problem, Rev. Math. Phys., Volume 26 (2014), 1450005, p. 26 | MR | Zbl

[GT10] Gralak, Boris; Tip, A. Macroscopic Maxwell’s equations and negative index materials, J. Math. Phys., Volume 51 (2010) no. 5, 052902, p. 28 | MR | Zbl

[GT17] Güttel, Stefan; Tisseur, Françoise The nonlinear eigenvalue problem, Acta Numer., Volume 26 (2017), pp. 1-94 | DOI | Zbl

[Kat13] Kato, Tosio Perturbation Theory for Linear Operators, Grundlehren der mathematischen wissenschaften in einzeldarstellungen, 132, Springer, 2013 | Zbl

[Nag89] Nagel, Rainer Towards a “matrix theory” for unbounded operator matrices, Math. Z., Volume 201 (1989) no. 1, pp. 57-68 | DOI | MR | Zbl

[Ngu16] Nguyen, Hoai-Minh Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients, J. Math. Pures Appl., Volume 106 (2016) no. 9, pp. 342-374 | DOI | MR | Zbl

[Ola95] Ola, Petri Remarks on a transmission problem, J. Math. Anal. Appl., Volume 196 (1995) no. 2, pp. 639-658 | MR | Zbl

[Pan19] Pankrashkin, Konstantin On self-adjoint realizations of sign-indefinite Laplacians, Rev. Roum. Math. Pures Appl., Volume 64 (2019) no. 2-3, pp. 345-372 | MR | Zbl

[Pen00] Pendry, John B. Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000), pp. 3966-3969 | DOI

[PP17] Perfekt, Karl-Mickail; Putinar, Mihai The essential spectrum of the Neumann–Poincaré operator on a domain with corners, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 2, pp. 1019-1033 | DOI | Zbl

[SB11] Su, Yangfeng; Bai, Zhaojun Solving rational eigenvalue problems via linearization, SIAM J. Matrix Anal. Appl., Volume 32 (2011) no. 1, pp. 201-216 | MR | Zbl

[Tip98] Tip, Adriaan Linear absorptive dielectrics, Phys. Rev. A, Volume 57 (1998), pp. 4818-4841

[Tip04] Tip, Adriaan Linear dispersive dielectrics as limits of Drude–Lorentz systems, Phys. Rev. E, Volume 69 (2004), 016610, p. 5

[Tre08] Tretter, Christiane Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, 2008 | Zbl

[Ves68] Veselago, Viktor G. The electrodynamics of substance with simultaneously negative values of ε and μ, Sov. Phys. Usp., Volume 10 (1968) no. 4, pp. 509-514 | DOI

Cited by Sources: