In this paper we prove that the Cauchy problem for first-order quasi-linear systems of partial differential equations is ill-posed in Gevrey spaces, under the assumption of an initial ellipticity. The assumption bears on the principal symbol of the first-order operator. Ill-posedness means instability in the sense of Hadamard, specifically an instantaneous defect of Hölder continuity of the flow from to , where depends on the initial spectrum. Building on the analysis carried out by G. Métivier [Remarks on the well-posedness of the nonlinear Cauchy problem, Contemp. Math. 2005], we show that ill-posedness follows from a long-time Cauchy–Kovalevskaya construction of a family of exact, highly oscillating, analytical solutions which are initially close to the null solution, and which grow exponentially fast in time. A specific difficulty resides in the observation time of instability. While in Sobolev spaces, this time is logarithmic in the frequency, in Gevrey spaces it is a power of the frequency. In particular, in Gevrey spaces the instability is recorded much later than in Sobolev spaces.
Dans cet article nous prouvons que le problème de Cauchy pour des systèmes d’équations aux dérivées partielles non-linéaires du premier ordre sont mal posées dans les espaces de Gevrey, sous la condition d’initiale ellipticité. L’hypothèse porte sur le symbole principal de l’opérateur du premier ordre. Le caractère mal-posé s’entend ici au sens d’Hadamard, en particulier par un défaut instantané de la continuité Hölder du flot depuis vers , où dépend du spectre initial. En suivant la construction proposée par G. Métivier dans [Remarks on the well-posedness of the nonlinear Cauchy problem, Contemp. Math. 2005], nous prouvons que le caractère mal-posé découle d’une construction à la Cauchy–Kovalevskaya en temps longs d’une famille de solutions exactes, rapidement oscillantes et analytiques proches initialement de la solution nulle, et qui croissent exponentiellement vite en temps. Une des difficultés ici réside dans le temps d’observation de l’instabilité. Alors qu’en régularité Sobolev, ce temps est logarithmique en fréquence, en régularité Gevrey il est une puissance en fréquence. En particulier, en régularité Gevrey l’instabilité est observée bien plus tard qu’en régularité Sobolev.
Revised:
Accepted:
Published online:
Keywords: Gevrey regularity, hyperbolic systems, ill-posedness
@article{AHL_2020__3__1195_0, author = {Morisse, Baptiste}, title = {On hyperbolicity and {Gevrey} well-posedness. {Part} one: the elliptic case.}, journal = {Annales Henri Lebesgue}, pages = {1195--1239}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.59}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.59/} }
TY - JOUR AU - Morisse, Baptiste TI - On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case. JO - Annales Henri Lebesgue PY - 2020 SP - 1195 EP - 1239 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.59/ DO - 10.5802/ahl.59 LA - en ID - AHL_2020__3__1195_0 ER -
Morisse, Baptiste. On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case.. Annales Henri Lebesgue, Volume 3 (2020), pp. 1195-1239. doi : 10.5802/ahl.59. http://archive.numdam.org/articles/10.5802/ahl.59/
[Bed16] Nonlinear echoes and Landau damping with insufficient regularity (2016) (https://arxiv.org/abs/1605.06841)
[BMM16] Landau damping: paraproducts and Gevrey regularity, Ann. PDE, Volume 2 (2016) no. 1, 4, pp. 1-71 | MR | Zbl
[Car61] Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes, Enseignement des sciences, Hermann, 1961 no. 26 | Zbl
[GVD10] On the ill-posedness of the Prandtl equation, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 591-609 | DOI | MR | Zbl
[GVM15] Well-posedness for the Prandtl system without analyticity or monotonicity, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 6, pp. 1273-1325 | DOI | MR | Zbl
[Had02] Sur les problèmes aux dérivées partielles et leur signification physique, Princeton University Bulletin, Volume 13 (1902) no. 28, pp. 49-52
[Kat66] Perturbation theory for linear operators, 132, Springer, 1966 | MR | Zbl
[Lax05] Asymptotic solutions of oscillatory initial value problems, Selected Papers Volume I (Sarnak, Peter; Majda, Andrew, eds.), Springer, 2005, pp. 56-75
[LMX10] Instability of the Cauchy-Kovalevskaya solution for a class of nonlinear systems, Am. J. Math., Volume 132 (2010) no. 1, pp. 99-123 | DOI | MR
[LNT18] The onset of instability in first-order systems, J. Eur. Math. Soc. (JEMS), Volume 20 (2018) no. 6, pp. 1303-1373 | DOI | MR | Zbl
[Miz61] Some remarks on the Cauchy problem, J. Math. Kyoto Univ., Volume 1 (1961) no. 1, pp. 109-127 | MR | Zbl
[Mor18] On hyperbolicity and Gevrey well-posedness. Part two: scalar or degenerate transitions, J. Differ. Equations, Volume 264 (2018) no. 8, pp. 5221-5262 | DOI | MR | Zbl
[MV11] On Landau damping, Acta Math, Volume 207 (2011) no. 1, pp. 29-201 | DOI | MR | Zbl
[Mét05] Remarks on the well-posedness of the nonlinear Cauchy problem, Geometric analysis of PDE and several complex variables (Contemporary Mathematics), Volume 368, American Mathematical Society, 2005, pp. 337-356 | DOI | MR | Zbl
[Rod93] Linear partial differential operators in Gevrey spaces, World Scientific, 1993 | Zbl
[Tex04] The short-wave limit for nonlinear, symmetric, hyperbolic systems, Adv. Differ. Equ., Volume 9 (2004) no. 1-2, pp. 1-52 | MR | Zbl
[Tex17] Basic matrix perturbation theory (2017) (to appear in L’Enseignement Mathématique) | Zbl
[Uka01] The Boltzmann–Grad limit and Cauchy–Kovalevskaya theorem, Japan J. Ind. Appl. Math., Volume 18 (2001) no. 2, pp. 383-392 | MR | Zbl
[Wag79] Le problème de Goursat non-linéaire, Séminaire Goulaouic-Schwartz 1978-1979, Équations aux dérivées partielles, Éditions de l’École polytechnique, 1979, pp. 1-11 | Numdam | MR | Zbl
[Wak01] The Lax–Mizohata theorem for nonlinear Cauchy Problems, Commun. Partial Differ. Equations, Volume 26 (2001) no. 7-8, pp. 1367-1384 | DOI | MR | Zbl
[Yag98] A note on Lax–Mizohata theorem for quasilinear equations, Commun. Partial Differ. Equations, Volume 23 (1998) no. 5-6, pp. 1-14 | DOI
[Yag02] The Lax–Mizohata theorem for nonlinear gauge invariant equations, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, Volume 49 (2002) no. 2, pp. 159-175 | DOI | MR | Zbl
Cited by Sources: