For a complex projective manifold that is rationally connected, resp. rationally simply connected, every finite subset is connected by a rational curve, resp. the spaces parameterizing these connecting rational curves are themselves rationally connected. We prove that a projective scheme over a global function field has a rational point if it deforms to a rationally simply connected variety in characteristic with vanishing elementary obstruction. This gives new, uniform proofs over these fields of the Period-Index Theorem, the quasi-split case of Serre’s “Conjecture II”, and Lang’s property.
Si une variété projective complexe est rationnellement connexe, chaque ensemble fini de points est contenu dans une courbe rationnelle ; si elle est rationnellement simplement connexe, les espaces paramétrant ces courbes rationnelles sont eux-mêmes rationnellement connexes. Nous montrons qu’un schéma projectif sur un corps global de caractéristique non nulle possède un point rationnel s’il se déforme en une variété rationnellement simplement connexe de caractéristique zéro dont l’obstruction élémentaire s’évanouit. Pour de tels corps, on obtient ainsi des preuves uniformes du théorème période-indice, du cas quasi-déployé de la « Conjecture II » de Serre, et de la propriété de Lang.
Revised:
Accepted:
Published online:
Keywords: rationally simply connected varieties, rational points, degenerations
@article{AHL_2020__3__1399_0, author = {Starr, Jason and Xu, Chenyang}, title = {Rational points of rationally simply connected varieties over global function fields}, journal = {Annales Henri Lebesgue}, pages = {1399--1417}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.65}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.65/} }
TY - JOUR AU - Starr, Jason AU - Xu, Chenyang TI - Rational points of rationally simply connected varieties over global function fields JO - Annales Henri Lebesgue PY - 2020 SP - 1399 EP - 1417 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.65/ DO - 10.5802/ahl.65 LA - en ID - AHL_2020__3__1399_0 ER -
%0 Journal Article %A Starr, Jason %A Xu, Chenyang %T Rational points of rationally simply connected varieties over global function fields %J Annales Henri Lebesgue %D 2020 %P 1399-1417 %V 3 %I ÉNS Rennes %U http://archive.numdam.org/articles/10.5802/ahl.65/ %R 10.5802/ahl.65 %G en %F AHL_2020__3__1399_0
Starr, Jason; Xu, Chenyang. Rational points of rationally simply connected varieties over global function fields. Annales Henri Lebesgue, Volume 3 (2020), pp. 1399-1417. doi : 10.5802/ahl.65. http://archive.numdam.org/articles/10.5802/ahl.65/
[BCTS08] The elementary obstruction and homogeneous spaces, Duke Math. J., Volume 141 (2008) no. 2, pp. 321-364 | DOI | MR | Zbl
[CTS87] La descente sur les variétés rationnelles. II, Duke Math. J., Volume 54 (1987) no. 2, pp. 375-492 | DOI | Zbl
[Del73] Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, 340, Springer, 1973 Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II)
[DeL15] Relatively very free curves and rational simple connectedness, J. Reine Angew. Math., Volume 699 (2015), pp. 1-33 | DOI | MR | Zbl
[Dem77] Automorphismes et déformations des variétés de Borel, Invent. Math., Volume 39 (1977) no. 2, pp. 179-186 | DOI | Zbl
[DG70] Schémas en groupes. II : Groupes de type multiplicatif, et structure des schémas en groupes généraux, Lecture Notes in Mathematics, 152, Springer, 1970 | Zbl
[dJ97] Families of curves and alterations, Ann. Inst. Fourier, Volume 47 (1997) no. 2, pp. 599-621 | DOI | Numdam | MR | Zbl
[dJHS11] Families of rationally simply connected varieties over surfaces and torsors for semisimple groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 114 (2011) no. 1, pp. 1-85 | DOI | MR | Zbl
[Esn03] Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math., Volume 151 (2003) no. 1, pp. 187-191 | DOI | MR | Zbl
[Esn06] Deligne’s integrality theorem in unequal characteristic and rational points over finite fields, Ann. Math., Volume 164 (2006) no. 2, pp. 715-730 (With an appendix by Pierre Deligne and Esnault) | DOI | MR | Zbl
[Esn07] Coniveau over -adic fields and points over finite fields, C. R. Math. Acad. Sci. Paris, Volume 345 (2007) no. 2, pp. 73-76 | DOI | MR | Zbl
[EX09] Congruence for rational points over finite fields and coniveau over local fields, Trans. Am. Math. Soc., Volume 361 (2009) no. 5, pp. 2679-2688 | DOI | MR | Zbl
[Fin10] Rational curves in low degree hypersurfaces of Grassmannian varieties, Ph. D. Thesis, State University of New York, Stony Brook, USA (2010) | MR
[Fuj02] A proof of the absolute purity conjecture (after Gabber), Algebraic geometry 2000, Azumino (Hotaka) (Advanced Studies in Pure Mathematics), Volume 36, Mathematical Society of Japan, 2002, pp. 153-183 | DOI | MR | Zbl
[GHMS05] Rational connectivity and sections of families over curves, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005), pp. 671-692 | DOI | Numdam | MR | Zbl
[Gil10] Serre’s conjecture II: a survey, Quadratic forms, linear algebraic groups, and cohomology (Developments in Mathematics), Volume 18, Springer, 2010, pp. 41-56 | DOI | MR | Zbl
[Gre66] Rational points in Henselian discrete valuation rings, Publ. Math., Inst. Hautes Étud. Sci. (1966) no. 31, pp. 563-568 | Numdam | MR
[Gro62] Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, 1962 | Zbl
[Gro63] Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Publ. Math., Inst. Hautes Étud. Sci., Volume 17 (1963) no. 1, pp. 5-80 | Numdam | Zbl
[Gro65] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas., Publ. Math., Inst. Hautes Étud. Sci., Volume 24 (1965) no. 1, pp. 5-223 | Numdam | Zbl
[Gro03] Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques, 3, Société Mathématique de France, 2003 (Séminaire de géométrie algébrique du Bois Marie 1960–61. [Geometric Algebra Seminar of Bois Marie 1960-61]. Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original)
[Gro05] Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Documents Mathématiques, 4, Société Mathématique de France, 2005 (Séminaire de Géométrie Algébrique du Bois Marie, 1962, Augmenté d’un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud], With a preface and edited by Yves Laszlo, Revised reprint of the 1968 French original) | Zbl
[Har75] Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III, J. Reine Angew. Math., Volume 274/275 (1975), pp. 125-138 (Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III) | DOI | Zbl
[Hir64] Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. Math., Volume 79 (1964), p. 109-203, 205–326 | DOI | MR | Zbl
[HX09] Degenerations of rationally connected varieties, Trans. Am. Math. Soc., Volume 361 (2009) no. 7, pp. 3931-3949 | DOI | MR | Zbl
[Jou77] Cohomologie -adique et fonctions , Lecture Notes in Mathematics, 589, Springer, 1977 Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5) | MR
[Jou83] Théorèmes de Bertini et applications, Progress in Mathematics, 42, Birkhäuser, 1983 | MR | Zbl
[Lan52] On quasi algebraic closure, Ann. Math., Volume 55 (1952), pp. 373-390 | DOI | MR | Zbl
[Lie06] Remarks on the stack of coherent algebras, Int. Math. Res. Not., Volume 2006 (2006) no. 11, 75273 | MR | Zbl
[LMB00] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 39, Springer, 2000 | Zbl
[Pir12] -équivalence sur les familles de variétés rationnelles et méthode de la descente, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 2, pp. 461-473 | DOI | Numdam | MR | Zbl
[Roq05] The Brauer–Hasse–Noether theorem in historical perspective, Schriften der Mathematisch-Naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, 15, Springer, 2005 | MR | Zbl
[SdJ10] Almost proper GIT-stacks and discriminant avoidance, Doc. Math., Volume 15 (2010), pp. 957-972 | MR | Zbl
[Ses77] Geometric reductivity over arbitrary base, Adv. Math., Volume 26 (1977) no. 3, pp. 225-274 | DOI | MR | Zbl
[Sko01] Torsors and rational points, Cambridge Tracts in Mathematics, 144, Cambridge University Press, 2001 | MR | Zbl
[Zhu19] Homogeneous space fibrations over surfaces, J. Inst. Math. Jussieu, Volume 18 (2019) no. 2, pp. 293-327 | DOI | MR | Zbl
Cited by Sources: