Soit un groupe de Lie complexe résoluble et un sous-groupe complexe fermé de . Si les fonctions holomorphes sur la variété complexe séparent localement les points de , alors est une variété de Stein. De plus, il existe un sous-groupe d’indice fini dans avec nilpotent. Dans des cas particuliers (par exemple si est discret), normalise et est abélien.
Let be a solvable complex Lie group and a closed complex subgroup of . If the global holomorphic functions of the complex manifold locally separate points on , then is a Stein manifold. Moreover there is a subgroup of finite index in with nilpotent. In special situations (e.g. if is discrete) normalizes and is abelian.
@article{AIF_1986__36_3_57_0, author = {Huckleberry, Alan T. and Oeljeklaus, E.}, title = {On holomorphically separable complex solv-manifolds}, journal = {Annales de l'Institut Fourier}, pages = {57--65}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {36}, number = {3}, year = {1986}, doi = {10.5802/aif.1059}, mrnumber = {88b:32069}, zbl = {0571.32012}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1059/} }
TY - JOUR AU - Huckleberry, Alan T. AU - Oeljeklaus, E. TI - On holomorphically separable complex solv-manifolds JO - Annales de l'Institut Fourier PY - 1986 SP - 57 EP - 65 VL - 36 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1059/ DO - 10.5802/aif.1059 LA - en ID - AIF_1986__36_3_57_0 ER -
%0 Journal Article %A Huckleberry, Alan T. %A Oeljeklaus, E. %T On holomorphically separable complex solv-manifolds %J Annales de l'Institut Fourier %D 1986 %P 57-65 %V 36 %N 3 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1059/ %R 10.5802/aif.1059 %G en %F AIF_1986__36_3_57_0
Huckleberry, Alan T.; Oeljeklaus, E. On holomorphically separable complex solv-manifolds. Annales de l'Institut Fourier, Tome 36 (1986) no. 3, pp. 57-65. doi : 10.5802/aif.1059. http://archive.numdam.org/articles/10.5802/aif.1059/
[1] Linear algebraic groups, Benjamin, New York, 1969. | MR | Zbl
,[2] A counterexample to the Serre problem with a bounded domain of C2 as fiber, Ann. of Math., 122 (1985), 329-334. | MR | Zbl
, ,[3] On non-compact complex nilmanifolds, Math. Ann., 238 (1978), 39-49. | MR | Zbl
, ,[4] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273. | MR | Zbl
,[5] On the algebra of representative functions of an analytic group, II, Am. J. Math., 86 (1964), 869-887. | MR | Zbl
, ,[6] Homogeneous spaces from a complex analytic viewpoint, Progress in Mathematics, Birkhäuser Vol. 14 (1981), 159-186. | MR | Zbl
, ,[7] Actions d'une forme de Lie réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques, Annales de l'Institut Fourier, 35-4 (1985), 59-97. | Numdam | MR | Zbl
,[8] Espaces homogènes de Stein des groupes de Lie complexes I, Nagoya Math. J., 16 (1960), 205-218. | MR | Zbl
,[9] Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155. | Numdam | MR | Zbl
, ,[10] Factor spaces of solvable groups, Ann. of Math., 60 (1954), 1-27. | MR | Zbl
,[11] Stein quotients of connected complex Lie groups, Manuskripta Math., 50 (1985), 185-214. | MR | Zbl
,[12] Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math., 7 (1956), 354-361. | MR | Zbl
,[13] Lie groups, Lie algebras, and their representations, Prentice Hall, Englewood Cliffs, 1974. | Zbl
,Cité par Sources :