Graded morphisms of G-modules
Annales de l'Institut Fourier, Tome 37 (1987) no. 4, pp. 161-166.

Soit A une algèbre sur C de dimension finie, qui est une instersection complète, c’est-à-dire A=C[X 1 ,...,X n ]/(f 1 ,...,f n ) pour une suite régulière f 1 ,...,f n . Steve Halperin a conjecturé que dans ce cas la composante connexe du groupe d’automorphisme de A est résoluble. On démontre cette conjecture lorsque l’algèbre A est graduée et engendrée par des éléments de degré un.

Let A be finite dimensional C-algebra which is a complete intersection, i.e. A=C[X 1 ,...,X n ]/(f 1 ,...,f n ) whith a regular sequences f 1 ,...,f n . Steve Halperin conjectured that the connected component of the automorphism group of such an algebra A is solvable. We prove this in case A is in addition graded and generated by elements of degree 1.

@article{AIF_1987__37_4_161_0,
     author = {Kraft, Hanspeter and Procesi, Claudio},
     title = {Graded morphisms of $G$-modules},
     journal = {Annales de l'Institut Fourier},
     pages = {161--166},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {37},
     number = {4},
     year = {1987},
     doi = {10.5802/aif.1115},
     zbl = {0818.13015},
     mrnumber = {89e:20078},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1115/}
}
TY  - JOUR
AU  - Kraft, Hanspeter
AU  - Procesi, Claudio
TI  - Graded morphisms of $G$-modules
JO  - Annales de l'Institut Fourier
PY  - 1987
DA  - 1987///
SP  - 161
EP  - 166
VL  - 37
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.1115/
UR  - https://zbmath.org/?q=an%3A0818.13015
UR  - https://www.ams.org/mathscinet-getitem?mr=89e:20078
UR  - https://doi.org/10.5802/aif.1115
DO  - 10.5802/aif.1115
LA  - en
ID  - AIF_1987__37_4_161_0
ER  - 
Kraft, Hanspeter; Procesi, Claudio. Graded morphisms of $G$-modules. Annales de l'Institut Fourier, Tome 37 (1987) no. 4, pp. 161-166. doi : 10.5802/aif.1115. http://archive.numdam.org/articles/10.5802/aif.1115/

[1] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik D1, Vieweg-Verlag, 1985. | Zbl 0669.14003

Cité par Sources :