The category of quadratic algebras is endowed with a tensor structure. This allows us to construct a class of Hopf algebras studied recently under the name of quantum (semi) groups.
La catégorie des algèbres quadratiques est munie d’une structure tensorielle. Ceci permet de construire des algèbres de Hopf du type “(semi) groupes quantiques”.
@article{AIF_1987__37_4_191_0, author = {Manin, Yu. I.}, title = {Some remarks on {Koszul} algebras and quantum groups}, journal = {Annales de l'Institut Fourier}, pages = {191--205}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, number = {4}, year = {1987}, doi = {10.5802/aif.1117}, mrnumber = {89e:16022}, zbl = {0625.58040}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1117/} }
TY - JOUR AU - Manin, Yu. I. TI - Some remarks on Koszul algebras and quantum groups JO - Annales de l'Institut Fourier PY - 1987 SP - 191 EP - 205 VL - 37 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1117/ DO - 10.5802/aif.1117 LA - en ID - AIF_1987__37_4_191_0 ER -
Manin, Yu. I. Some remarks on Koszul algebras and quantum groups. Annales de l'Institut Fourier, Volume 37 (1987) no. 4, pp. 191-205. doi : 10.5802/aif.1117. http://archive.numdam.org/articles/10.5802/aif.1117/
[1] Quantum groups, Zap. Naučn. sem. LOMI, vol. 155 (1986), 18-49 (in russian). | MR | Zbl
,[2] Koszul resolutions, Trans. AMS, 152-1 (1970), 39-60. | MR | Zbl
,[3] On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebra, Springer Lecture Notes in Math., vol. 1183 (1986), 291-338. | MR | Zbl
,[4] Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk, 41-5 (1986), 185-186 (in russian). | MR | Zbl
,[5] Tannakian categories, Springer lecture Notes in Math., vol. 900 (1982), 101-228. | MR | Zbl
, ,[6] Mixed categories, Ext-duality and representations, 1986, preprint.
, ,[7] On quadratic commutation relations in the quasiclassic limit, in : Mat. Fizika i Funke. Analiz, Kiev, Naukova Dumka (1986), 25-33 (in russian). | MR | Zbl
,Cited by Sources: