On Linnik's theorem on Goldbach numbers in short intervals and related problems
Annales de l'Institut Fourier, Volume 44 (1994) no. 2, pp. 307-322.

Linnik proved, assuming the Riemann Hypothesis, that for any ϵ>0, the interval [N,N+log 3+ϵ N] contains a number which is the sum of two primes, provided that N is sufficiently large. This has subsequently been improved to the same assertion being valid for the smaller gap Clog 2 N, the added new ingredient being Selberg’s estimate for the mean-square of primes in short intervals. Here we give another proof of this sharper result which avoids the use of Selberg’s estimate and is therefore more in the spirit of Linnik’s original approach. We also improve an unconditional result of Lavrik’s on truncated froms of Parseval’s identity for exponential sums over primes.

En admettant l’hypothèse de Riemann, Linnik a prouvé que, pour tout ϵ>0 et pour N assez grand, l’intervalle [N,N+log 3+ϵ N] contient un entier qui est somme de deux nombres premiers. Ce résultat a été amélioré ensuite en prouvant que la propriété reste vraie pour l’écart Clog 2 N, en utilisant l’estimation de Selberg pour la moyenne quadratique des nombres premiers dans les petits intervalles. On donne ici une nouvelle démonstration du deuxième résultat qui, n’utilisant pas l’estimation de Selberg, suit davantage l’esprit de l’approche originale de Linnik. On améliore aussi un résultat de Lavrik concernant des formes tronquées de l’identité de Parseval pour des sommes d’exponentielles sur les nombres premiers.

@article{AIF_1994__44_2_307_0,
     author = {Languasco, Alessandro and Perelli, Alberto},
     title = {On {Linnik's} theorem on {Goldbach} numbers in short intervals and related problems},
     journal = {Annales de l'Institut Fourier},
     pages = {307--322},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {44},
     number = {2},
     year = {1994},
     doi = {10.5802/aif.1399},
     mrnumber = {95g:11097},
     zbl = {0799.11040},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1399/}
}
TY  - JOUR
AU  - Languasco, Alessandro
AU  - Perelli, Alberto
TI  - On Linnik's theorem on Goldbach numbers in short intervals and related problems
JO  - Annales de l'Institut Fourier
PY  - 1994
SP  - 307
EP  - 322
VL  - 44
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1399/
DO  - 10.5802/aif.1399
LA  - en
ID  - AIF_1994__44_2_307_0
ER  - 
%0 Journal Article
%A Languasco, Alessandro
%A Perelli, Alberto
%T On Linnik's theorem on Goldbach numbers in short intervals and related problems
%J Annales de l'Institut Fourier
%D 1994
%P 307-322
%V 44
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1399/
%R 10.5802/aif.1399
%G en
%F AIF_1994__44_2_307_0
Languasco, Alessandro; Perelli, Alberto. On Linnik's theorem on Goldbach numbers in short intervals and related problems. Annales de l'Institut Fourier, Volume 44 (1994) no. 2, pp. 307-322. doi : 10.5802/aif.1399. http://archive.numdam.org/articles/10.5802/aif.1399/

[1] P.X. Gallagher, Some consequences of the Riemann hypothesis, Acta Arith., 37 (1980), 339-343. | MR | Zbl

[2] D.A. Goldston, Linnik's theorem on Goldbach numbers in short intervals, Glasgow Math. J., 32 (1990), 285-297. | MR | Zbl

[3] H. Halberstam, H.-E. Richert, Sieve Methods, Academic Press, 1974. | MR | Zbl

[4] I. Kátai, A remark on a paper of Ju. V. Linnik (Hungarian), Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 17 (1967), 99-100. | MR | Zbl

[5] A.F. Lavrik, Estimation of certain integrals connected with the additive problems (Russian), Vestnik Leningrad Univ., 19 (1959), 5-12. | MR | Zbl

[6] Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 16 (1952), 503-520. | Zbl

[7] H. L. Montgomery, R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith., 27 (1975), 353-370. | MR | Zbl

[8] B. Saffari, R. C. Vaughan, On the fractional parts of x/n and related sequences II, Ann. Inst. Fourier, 27-2 (1977), 1-30. | Numdam | MR | Zbl

[9] A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid., 47 (1943), 87-105. | MR | Zbl

[10] I.M. Vinogradov, Selected Works, Springer Verlag, 1985.

Cited by Sources: