Nous considérons le groupe de monodromie de l’équation différentielle de Pochhammer . Soit l’équation réduite modulo un nombre premier . Alors, on montre que est fini si et seulement si admet un système fondamental de solutions polynomiales pour presque tous les nombres premiers.
We consider the monodromy group of the Pochhammer differential equation . Let be the reduce equation modulo a prime . Then we show that is finite if and only if has a full set of polynomial solutions for almost all primes .
@article{AIF_1994__44_3_767_0, author = {Haraoka, Yoshishige}, title = {Finite monodromy of {Pochhammer} equation}, journal = {Annales de l'Institut Fourier}, pages = {767--810}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {3}, year = {1994}, doi = {10.5802/aif.1417}, mrnumber = {96c:33018}, zbl = {0812.33006}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1417/} }
TY - JOUR AU - Haraoka, Yoshishige TI - Finite monodromy of Pochhammer equation JO - Annales de l'Institut Fourier PY - 1994 SP - 767 EP - 810 VL - 44 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1417/ DO - 10.5802/aif.1417 LA - en ID - AIF_1994__44_3_767_0 ER -
%0 Journal Article %A Haraoka, Yoshishige %T Finite monodromy of Pochhammer equation %J Annales de l'Institut Fourier %D 1994 %P 767-810 %V 44 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1417/ %R 10.5802/aif.1417 %G en %F AIF_1994__44_3_767_0
Haraoka, Yoshishige. Finite monodromy of Pochhammer equation. Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 767-810. doi : 10.5802/aif.1417. http://archive.numdam.org/articles/10.5802/aif.1417/
[1] Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. | MR | Zbl
, ,[2] Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. | MR | Zbl
, ,[3] Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990).
,[4] Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. | Zbl
,[5] Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. | MR | Zbl
,[6] Ordinary differential equations, New York, 1926.
,[7] From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. | Zbl
, , , ,[8] Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. | Numdam | MR | Zbl
,[9] Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. | MR | Zbl
,[10] Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. | JFM
,[11] Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese).
,[12] On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987.
,[13] On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. | MR | Zbl
,[14] On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. | MR | Zbl
, ,[15] A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. | MR | Zbl
, ,[16] Modern Analysis, Cambridge, 1927.
, ,[17] On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. | MR | Zbl
,[18] On an irreducibility condition for hypergeometric systems, preprint. | Zbl
,Cité par Sources :