The following result is proved: if a bipartite graph is not a circle graph, then its complement is not a circle graph. The proof uses Naji’s characterization of circle graphs by means of a linear system of equations with unknowns in .
At the end of this short note I briefly recall the work of François Jaeger on circle graphs.
Nous prouvons le résultat suivant : si un graphe biparti n’est pas un graphe de cordes, alors son complément n’est pas un graphe de cordes. La preuve fait appel à une caractérisation des graphes de cordes par Naji, qui utilise un système d’équations linéaires sur le corps à deux éléments.
À la fin de cette note je rappelle brièvement le travail de François Jaeger sur les graphes de cordes.
@article{AIF_1999__49_3_809_0, author = {Bouchet, Andr\'e}, title = {Bipartite graphs that are not circle graphs}, journal = {Annales de l'Institut Fourier}, pages = {809--814}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {3}, year = {1999}, doi = {10.5802/aif.1693}, mrnumber = {2000g:05127}, zbl = {0917.05064}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1693/} }
TY - JOUR AU - Bouchet, André TI - Bipartite graphs that are not circle graphs JO - Annales de l'Institut Fourier PY - 1999 SP - 809 EP - 814 VL - 49 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1693/ DO - 10.5802/aif.1693 LA - en ID - AIF_1999__49_3_809_0 ER -
%0 Journal Article %A Bouchet, André %T Bipartite graphs that are not circle graphs %J Annales de l'Institut Fourier %D 1999 %P 809-814 %V 49 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1693/ %R 10.5802/aif.1693 %G en %F AIF_1999__49_3_809_0
Bouchet, André. Bipartite graphs that are not circle graphs. Annales de l'Institut Fourier, Volume 49 (1999) no. 3, pp. 809-814. doi : 10.5802/aif.1693. http://archive.numdam.org/articles/10.5802/aif.1693/
[1] Graphic presentations of isotropic systems, J. Combin. Theory, Ser. B, 45 (1988), 58-76. | MR | Zbl
,[2] A characterization of unimodular orientations of simple graphs, J. Combin. Theory, Ser. B, 56 (1992), 45-54. | MR | Zbl
,[3] Circle graph obstructions, J. Combin. Theory, Ser. B, 60 (1994), 107-144. | MR | Zbl
,[4] A characterization of circle graphs, Europ. J. Combin., 5 (1984), 223-238. | MR | Zbl
,[5] A short proof of a circle graph characterization, Discrete Math., 173 (1997), 277-283. | MR | Zbl
,[6] Graphes de cordes et espaces graphiques, Europ. J. Combin., 4 (1983), 319-327. | MR | Zbl
,[7] On some algebraic properties of graphs, in Progress in Graph Theory (Waterloo, Ont. 1982), Academic Press, Toronto, Ont., 1984, 347-366. | MR | Zbl
,[8] Graphic description of binary spaces, in Matroid Theory (Szeged, 1982), vol. 40 of Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam (1985), 215-231. | MR | Zbl
,[9] Reconnaissance des graphes de cordes, Discrete Math., 54 (1985), 329-337. | MR | Zbl
,[10] Matroid Decomposition, Academic Press, 1992. | MR | Zbl
,[11] Lectures on matroids, J. Res. Nat. Bur. Standards, Sect. B, 69b (1965), 1-47. | MR | Zbl
,Cited by Sources: