Definitions of Sobolev classes on metric spaces
Annales de l'Institut Fourier, Tome 49 (1999) no. 6, pp. 1903-1924.

Dans cet article nous comparons les différentes définitions qui ont été données de l’espace de Sobolev associé à un espace métrique qui n’admet aucune structure différentielle. Nous prouvons en particulier que l’espace de Sobolev W1,p qu’on obtient à partir de la métrique de Carnot-Carathéodory associée à une famille de champs de vecteurs {X1,,Xm} coïncide pour p>1 avec l’espace naturel des fonctions uLp telles que XjuLp pour j=1,...,m lorsque toute fonction lipschitzienne satisfait une inégalité de Poincaré intrinsèque, convenable.

There have been recent attempts to develop the theory of Sobolev spaces W1,p on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case p=1.

@article{AIF_1999__49_6_1903_0,
     author = {Franchi, Bruno and Haj{\l}asz, Piotr and Koskela, Pekka},
     title = {Definitions of {Sobolev} classes on metric spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1903--1924},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {6},
     year = {1999},
     doi = {10.5802/aif.1742},
     mrnumber = {2001a:46033},
     zbl = {0938.46037},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1742/}
}
TY  - JOUR
AU  - Franchi, Bruno
AU  - Hajłasz, Piotr
AU  - Koskela, Pekka
TI  - Definitions of Sobolev classes on metric spaces
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 1903
EP  - 1924
VL  - 49
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1742/
DO  - 10.5802/aif.1742
LA  - en
ID  - AIF_1999__49_6_1903_0
ER  - 
%0 Journal Article
%A Franchi, Bruno
%A Hajłasz, Piotr
%A Koskela, Pekka
%T Definitions of Sobolev classes on metric spaces
%J Annales de l'Institut Fourier
%D 1999
%P 1903-1924
%V 49
%N 6
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1742/
%R 10.5802/aif.1742
%G en
%F AIF_1999__49_6_1903_0
Franchi, Bruno; Hajłasz, Piotr; Koskela, Pekka. Definitions of Sobolev classes on metric spaces. Annales de l'Institut Fourier, Tome 49 (1999) no. 6, pp. 1903-1924. doi : 10.5802/aif.1742. https://www.numdam.org/articles/10.5802/aif.1742/

[1] C. Dellacherie, P.A. Meyer, Probabilities and potential, North-Holland Mathematics Studies, 29, North-Holland Publishing Co., 1978. | MR | Zbl

[2] E.B. Fabes, C.E. Kenig, R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. | MR | Zbl

[3] H. Federer, Geometric Measure Theory, Springer, 1969. | MR | Zbl

[4] B. Franchi, C. Gutiérrez, R.L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604. | MR | Zbl

[5] B. Franchi, E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 10 (1983), 523-541. | Numdam | MR | Zbl

[6] B. Franchi, G. Lu, R.L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Int. Mat. Res. Notices (1996), 1-14.

[7] B. Franchi, C. Pérez, R.L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal., 153 (1998), 108-146. | MR | Zbl

[8] B. Franchi, R. Serapioni, F. Serra Cassano, Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital., (7) 11-B (1997), 83-117. | MR | Zbl

[9] N. Garofalo, D.M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), 67-97. | Zbl

[10] N. Garofalo, D.M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144. | MR | Zbl

[11] P. Hajiasz, Sobolev spaces on an arbitrary metric space, Potential Analysis, 5 (1996), 403-415. | MR | Zbl

[12] P. Hajiasz, Geometric approach to Sobolev spaces and badly degenerated elliptic equations, The Proceedings of Banach Center Minisemester : Nonlinear Analysis and Applications, (N.Kenmochi, M. Niezgódka, P.Strzelecki, eds.) GAKUTO International Series; Mathematical Sciences and Applications, vol. 7 (1995), 141-168. | MR | Zbl

[13] P. Hajiasz, P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris, 320 (1995), 1211-1215. | MR | Zbl

[14] P. Hajiasz, P. Koskela, Sobolev met Poincaré, Memoirs Amer. Math. Soc., to appear. | Zbl

[15] J. Heinonen, P. Koskela, Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand., 77 (1995), 251-271. | EuDML | MR | Zbl

[16] J. Heinonen, P. Koskela, Quasiconformal maps on metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61. | MR | Zbl

[17] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523. | MR | Zbl

[18] T. Kilpeläinen, Smooth approximation in weighted Sobolev spaces, Comment. Math. Univ. Carolinae, 38 (1997), 29-35. | EuDML | MR | Zbl

[19] P. Koskela, P. Macmanus, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17. | EuDML | MR | Zbl

[20] G. Lu, The sharp Poincaré inequality for free vector fields : An endpoint result, Rev. Mat. Iberoamericana, 10 (1994), 453-466. | EuDML | MR | Zbl

[21] A. Nagel, E.M. Stein and S. Wainger, Balls and metrics defined by vector fields I : Basic properties, Acta Math., 155 (1985), 103-147. | MR | Zbl

[22] S. Semmes, Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.), 2 (1996), 155-295. | MR | Zbl

Cité par Sources :