Dans cet article nous comparons les différentes définitions qui ont été données de l’espace de Sobolev associé à un espace métrique qui n’admet aucune structure différentielle. Nous prouvons en particulier que l’espace de Sobolev
There have been recent attempts to develop the theory of Sobolev spaces
@article{AIF_1999__49_6_1903_0, author = {Franchi, Bruno and Haj{\l}asz, Piotr and Koskela, Pekka}, title = {Definitions of {Sobolev} classes on metric spaces}, journal = {Annales de l'Institut Fourier}, pages = {1903--1924}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {6}, year = {1999}, doi = {10.5802/aif.1742}, mrnumber = {2001a:46033}, zbl = {0938.46037}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1742/} }
TY - JOUR AU - Franchi, Bruno AU - Hajłasz, Piotr AU - Koskela, Pekka TI - Definitions of Sobolev classes on metric spaces JO - Annales de l'Institut Fourier PY - 1999 SP - 1903 EP - 1924 VL - 49 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1742/ DO - 10.5802/aif.1742 LA - en ID - AIF_1999__49_6_1903_0 ER -
%0 Journal Article %A Franchi, Bruno %A Hajłasz, Piotr %A Koskela, Pekka %T Definitions of Sobolev classes on metric spaces %J Annales de l'Institut Fourier %D 1999 %P 1903-1924 %V 49 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1742/ %R 10.5802/aif.1742 %G en %F AIF_1999__49_6_1903_0
Franchi, Bruno; Hajłasz, Piotr; Koskela, Pekka. Definitions of Sobolev classes on metric spaces. Annales de l'Institut Fourier, Tome 49 (1999) no. 6, pp. 1903-1924. doi : 10.5802/aif.1742. https://www.numdam.org/articles/10.5802/aif.1742/
[1] Probabilities and potential, North-Holland Mathematics Studies, 29, North-Holland Publishing Co., 1978. | MR | Zbl
, ,[2] The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. | MR | Zbl
, , ,[3] Geometric Measure Theory, Springer, 1969. | MR | Zbl
,[4] Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604. | MR | Zbl
, , ,[5] Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 10 (1983), 523-541. | Numdam | MR | Zbl
, ,[6] Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Int. Mat. Res. Notices (1996), 1-14.
, , ,[7] Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal., 153 (1998), 108-146. | MR | Zbl
, , ,[8] Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital., (7) 11-B (1997), 83-117. | MR | Zbl
, , ,[9] Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), 67-97. | Zbl
, ,[10] Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144. | MR | Zbl
, ,[11] Sobolev spaces on an arbitrary metric space, Potential Analysis, 5 (1996), 403-415. | MR | Zbl
,[12] Geometric approach to Sobolev spaces and badly degenerated elliptic equations, The Proceedings of Banach Center Minisemester : Nonlinear Analysis and Applications, (N.Kenmochi, M. Niezgódka, P.Strzelecki, eds.) GAKUTO International Series; Mathematical Sciences and Applications, vol. 7 (1995), 141-168. | MR | Zbl
,[13] Sobolev meets Poincaré, C. R. Acad. Sci. Paris, 320 (1995), 1211-1215. | MR | Zbl
, ,[14] Sobolev met Poincaré, Memoirs Amer. Math. Soc., to appear. | Zbl
, ,[15] Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand., 77 (1995), 251-271. | EuDML | MR | Zbl
, ,[16] Quasiconformal maps on metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61. | MR | Zbl
, ,[17] The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523. | MR | Zbl
,[18] Smooth approximation in weighted Sobolev spaces, Comment. Math. Univ. Carolinae, 38 (1997), 29-35. | EuDML | MR | Zbl
,[19] Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17. | EuDML | MR | Zbl
, ,[20] The sharp Poincaré inequality for free vector fields : An endpoint result, Rev. Mat. Iberoamericana, 10 (1994), 453-466. | EuDML | MR | Zbl
,[21] Balls and metrics defined by vector fields I : Basic properties, Acta Math., 155 (1985), 103-147. | MR | Zbl
, and ,[22] Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.), 2 (1996), 155-295. | MR | Zbl
,Cité par Sources :