Soit une décomposition disjointe de et soit un champ de vecteurs sur , défini comme étant linéaire sur chaque cellule de la décomposition . Sous certaines hypothèses naturelles, nous montrons comment associer un semi-flot à et nous montrons qu’un tel semi-flot appartient à la structure o-minimale . En particulier, si est un champ de vecteurs continu et est un sous-ensemble invariant par , notre résultat implique que l’application de premier retour de Poincaré associée à est également dans quand est non-spiralante.
Let be a disjoint decomposition of and let be a vector field on , defined to be linear on each cell of the decomposition . Under some natural assumptions, we show how to associate a semiflow to and prove that such semiflow belongs to the o-minimal structure . In particular, when is a continuous vector field and is an invariant subset of , our result implies that if is non-spiralling then the Poincaré first return map associated is also in .
Keywords: piecewise linear vector field, o-minimal, semiflow
Mot clés : champ de vecteurs linéaire par parties, o-minimale, semi-flot
@article{AIF_2002__52_6_1593_0, author = {Panazzolo, Daniel}, title = {Tame semiflows for piecewise linear vector fields}, journal = {Annales de l'Institut Fourier}, pages = {1593--1628}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {6}, year = {2002}, doi = {10.5802/aif.1928}, mrnumber = {1952525}, zbl = {1009.37008}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1928/} }
TY - JOUR AU - Panazzolo, Daniel TI - Tame semiflows for piecewise linear vector fields JO - Annales de l'Institut Fourier PY - 2002 SP - 1593 EP - 1628 VL - 52 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1928/ DO - 10.5802/aif.1928 LA - en ID - AIF_2002__52_6_1593_0 ER -
%0 Journal Article %A Panazzolo, Daniel %T Tame semiflows for piecewise linear vector fields %J Annales de l'Institut Fourier %D 2002 %P 1593-1628 %V 52 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1928/ %R 10.5802/aif.1928 %G en %F AIF_2002__52_6_1593_0
Panazzolo, Daniel. Tame semiflows for piecewise linear vector fields. Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1593-1628. doi : 10.5802/aif.1928. http://archive.numdam.org/articles/10.5802/aif.1928/
[A] Ordinary Differential Equations, Moscow, 1984
[ACT] Oscillators with chaotic behavior: an illustration of a theorem by Shilnikov, J. Statist. Phys., Volume 27 (1982) no. 1, pp. 171-182 | DOI | MR | Zbl
[BH] Local Semi-Dynamical Systems, Lecture Note in Math., Volume 90 (1969) | MR | Zbl
[BR] Real Algebraic and semi-algebraic sets, Hermann, Paris, 1990 | MR | Zbl
[D] Tame Topology and O-minimal Structures, Cambridge University Press, 1998 | MR | Zbl
[DMM] The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., Volume 140 (1994) no. 2, pp. 183-205 | DOI | MR | Zbl
[F] Computation of the Matrix Exponential, Amer. Math. Monthly, Volume 82 (1975), pp. 156-159 | DOI | MR | Zbl
[Fi] Differential equations with discontinuous right-hand side, Mat. Sb. (N.S., Russian), Volume 51 (1960), pp. 99-128 | MR | Zbl
[Ha] Discontinuous Differential Equations I, J. Diff. Eq., Volume 32 (1979), pp. 149-170 | DOI | MR | Zbl
[Hi] Differential Topology, Springer-Verlag, 1976 | MR | Zbl
[Ka] The Hilbert 16th Problem and an Estimate for Cyclicity of an Elementary Polycycle (Preprint)
[Kh] Fewnomials, AMS Translations of Mathematical Monographs, Volume 88 | MR | Zbl
[LR] Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier, Volume 47 (1997) no. 3, pp. 859-884 | DOI | Numdam | MR | Zbl
[M] A general model completeness result for expansions of the real ordered field, Ann. Pure Appl. Logic, Volume 95 (1998) no. (1-3), pp. 185-227 | DOI | MR | Zbl
[MR] Théorie de Hovanskii et problème de Dulac, Invent. Math., Volume 105 (1991) no. 2, pp. 431-441 | DOI | MR | Zbl
[S] Chua's circuit: rigorous results and future problems, Internat. J. Bifur. Chaos, Volume 4 (1994) no. 3, pp. 489-519 | DOI | MR
[W] Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc., Volume 9 (1996), pp. 1051-1094 | DOI | MR | Zbl
Cité par Sources :