An application of classical invariant theory to identifiability in nonparametric mixtures
Annales de l'Institut Fourier, Volume 55 (2005) no. 1, pp. 1-28.

It is known that the identifiability of multivariate mixtures reduces to a question in algebraic geometry. We solve the question by studying certain generators in the ring of polynomials in vector variables, invariant under the action of the symmetric group.

On sait que l'identifiabilité des mélanges multivariés se réduit à une question de géométrie algébrique. Nous résolvons cette question en étudiant des générateurs particuliers dans l'anneau des polynômes à variables vectorielles, invariants sous l'action du groupe symétrique.

DOI: 10.5802/aif.2087
Classification: 13A50, 62G07, 62H12
Keywords: Mixture model, birational, invariant
Mot clés : modèle de mélange, birationel, invariant
Elmore, Ryan 1; Hall, Peter ; Neeman, Amnon 

1 Australian National University, centre for Mathematics and its Applications, Mathematical Sciences Institute, John Dedman Building, Canberra ACT 0200 (AUSTRALIE)
@article{AIF_2005__55_1_1_0,
     author = {Elmore, Ryan and Hall, Peter and Neeman, Amnon},
     title = {An application of classical invariant theory to identifiability in nonparametric mixtures},
     journal = {Annales de l'Institut Fourier},
     pages = {1--28},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {1},
     year = {2005},
     doi = {10.5802/aif.2087},
     mrnumber = {2141286},
     zbl = {02162462},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2087/}
}
TY  - JOUR
AU  - Elmore, Ryan
AU  - Hall, Peter
AU  - Neeman, Amnon
TI  - An application of classical invariant theory to identifiability in nonparametric mixtures
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 1
EP  - 28
VL  - 55
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2087/
DO  - 10.5802/aif.2087
LA  - en
ID  - AIF_2005__55_1_1_0
ER  - 
%0 Journal Article
%A Elmore, Ryan
%A Hall, Peter
%A Neeman, Amnon
%T An application of classical invariant theory to identifiability in nonparametric mixtures
%J Annales de l'Institut Fourier
%D 2005
%P 1-28
%V 55
%N 1
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2087/
%R 10.5802/aif.2087
%G en
%F AIF_2005__55_1_1_0
Elmore, Ryan; Hall, Peter; Neeman, Amnon. An application of classical invariant theory to identifiability in nonparametric mixtures. Annales de l'Institut Fourier, Volume 55 (2005) no. 1, pp. 1-28. doi : 10.5802/aif.2087. http://archive.numdam.org/articles/10.5802/aif.2087/

[1] M. V. Catalisano; A. V. Geramita; A. Gimigliano Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl., Volume 355 (2002), pp. 263-285 | DOI | MR | Zbl

[2] M. V. Catalisano; A. V. Geramita; A. Gimigliano Erratum to ``Ranks of tensors, secant varieties of Segre varieties and fat points'', Linear Algebra Appl., Volume 367 (2003), pp. 347-348 | DOI | MR | Zbl

[3] L. D. Garcia; M. Stillman; B. Sturmfels Algebraic geometry of Bayesian networks (e-print, http://arXiv.org/abs/math.AG/0301255)

[4] I. M. Gel'fand; M. M. Kapranov; A. V. Zelevinsky Discriminants, resultants, and multidimensional determinants, Mathematics: Theory \& Applications, Birkhäuser, Boston, MA, 1994 | MR | Zbl

[5] L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models, Biometrika, Volume 61 (1974), pp. 215-231 | DOI | MR | Zbl

[6] P. Hall; X.-H. Zhou Nonparametric estimation of component distributions in a multivariate mixture, Ann. Statist., Volume 31 (2003), pp. 201-224 | DOI | MR | Zbl

[7] P. Hall; A. Neeman; R. Pakyari; R. Elmore Nonparametric inference in multivariate mixtures (To appear)

[8] J. M. Landsberg; L. Manivel On the ideals of secant varieties to Segre varieties (e-print, http://arXiv.org/abs/math.AG/0311388) | Zbl

[9] B.G. Lindsay Mixture Models: Theory Geometry and Applications (1995) | Zbl

[10] G.J. Mac; Lachlan; D. Peel Finite Mixture Models, John Wiley & Sons, 2000

[11] A. Mattuck The field of multisymmetric functions, Proc. Amer. Math. Soc., Volume 19 (1968), pp. 764-765 | MR | Zbl

[12] M. Nagata On the normality of the Chow variety of positive 0-cycles of degree m in an algebraic variety (Mem. Coll. Sci. Univ. Kyoto A. Math.), Volume 29 (1955), pp. 165-176 | Zbl

[13] A. Neeman Zero cycles in n , Advances in Math., Volume 89 (1991), pp. 217-227 | DOI | MR | Zbl

[14] E. Netto Vorlesungen über Algebra, Teubner Verlag, Leipzig, 1896 | JFM

[15] H. Teicher Identifiability of mixtures, Ann. Math. Statist., Volume 32 (1961), pp. 244-248 | DOI | MR | Zbl

[16] H. Teicher Identifiability of finite mixtures, Ann. Math. Statist., Volume 34 (1963), pp. 1265-1269 | DOI | MR | Zbl

[17] D.M. Titterington; A.F. Smith; U.E. Makov Statistical Analysis of Finite Mixture Distributions, John Wiley \& Sons, 1985 | MR | Zbl

[18] H. Weyl The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton N.J., 1939 | MR | Zbl

[19] S.J. Yakowitz; J. D. Spragins On the identifiability of finite mixtures, Ann. Math. Statist., Volume 39 (1968), pp. 209-214 | DOI | MR | Zbl

Cited by Sources: