It is known that the identifiability of multivariate mixtures reduces to a question in algebraic geometry. We solve the question by studying certain generators in the ring of polynomials in vector variables, invariant under the action of the symmetric group.
On sait que l'identifiabilité des mélanges multivariés se réduit à une question de géométrie algébrique. Nous résolvons cette question en étudiant des générateurs particuliers dans l'anneau des polynômes à variables vectorielles, invariants sous l'action du groupe symétrique.
Keywords: Mixture model, birational, invariant
Mot clés : modèle de mélange, birationel, invariant
@article{AIF_2005__55_1_1_0, author = {Elmore, Ryan and Hall, Peter and Neeman, Amnon}, title = {An application of classical invariant theory to identifiability in nonparametric mixtures}, journal = {Annales de l'Institut Fourier}, pages = {1--28}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {1}, year = {2005}, doi = {10.5802/aif.2087}, mrnumber = {2141286}, zbl = {02162462}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2087/} }
TY - JOUR AU - Elmore, Ryan AU - Hall, Peter AU - Neeman, Amnon TI - An application of classical invariant theory to identifiability in nonparametric mixtures JO - Annales de l'Institut Fourier PY - 2005 SP - 1 EP - 28 VL - 55 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2087/ DO - 10.5802/aif.2087 LA - en ID - AIF_2005__55_1_1_0 ER -
%0 Journal Article %A Elmore, Ryan %A Hall, Peter %A Neeman, Amnon %T An application of classical invariant theory to identifiability in nonparametric mixtures %J Annales de l'Institut Fourier %D 2005 %P 1-28 %V 55 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2087/ %R 10.5802/aif.2087 %G en %F AIF_2005__55_1_1_0
Elmore, Ryan; Hall, Peter; Neeman, Amnon. An application of classical invariant theory to identifiability in nonparametric mixtures. Annales de l'Institut Fourier, Volume 55 (2005) no. 1, pp. 1-28. doi : 10.5802/aif.2087. http://archive.numdam.org/articles/10.5802/aif.2087/
[1] Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl., Volume 355 (2002), pp. 263-285 | DOI | MR | Zbl
[2] Erratum to ``Ranks of tensors, secant varieties of Segre varieties and fat points'', Linear Algebra Appl., Volume 367 (2003), pp. 347-348 | DOI | MR | Zbl
[3] Algebraic geometry of Bayesian networks (e-print, http://arXiv.org/abs/math.AG/0301255)
[4] Discriminants, resultants, and multidimensional determinants, Mathematics: Theory \& Applications, Birkhäuser, Boston, MA, 1994 | MR | Zbl
[5] Exploratory latent structure analysis using both identifiable and unidentifiable models, Biometrika, Volume 61 (1974), pp. 215-231 | DOI | MR | Zbl
[6] Nonparametric estimation of component distributions in a multivariate mixture, Ann. Statist., Volume 31 (2003), pp. 201-224 | DOI | MR | Zbl
[7] Nonparametric inference in multivariate mixtures (To appear)
[8] On the ideals of secant varieties to Segre varieties (e-print, http://arXiv.org/abs/math.AG/0311388) | Zbl
[9] Mixture Models: Theory Geometry and Applications (1995) | Zbl
[10] Finite Mixture Models, John Wiley & Sons, 2000
[11] The field of multisymmetric functions, Proc. Amer. Math. Soc., Volume 19 (1968), pp. 764-765 | MR | Zbl
[12] On the normality of the Chow variety of positive -cycles of degree in an algebraic variety (Mem. Coll. Sci. Univ. Kyoto A. Math.), Volume 29 (1955), pp. 165-176 | Zbl
[13] Zero cycles in , Advances in Math., Volume 89 (1991), pp. 217-227 | DOI | MR | Zbl
[14] Vorlesungen über Algebra, Teubner Verlag, Leipzig, 1896 | JFM
[15] Identifiability of mixtures, Ann. Math. Statist., Volume 32 (1961), pp. 244-248 | DOI | MR | Zbl
[16] Identifiability of finite mixtures, Ann. Math. Statist., Volume 34 (1963), pp. 1265-1269 | DOI | MR | Zbl
[17] Statistical Analysis of Finite Mixture Distributions, John Wiley \& Sons, 1985 | MR | Zbl
[18] The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton N.J., 1939 | MR | Zbl
[19] On the identifiability of finite mixtures, Ann. Math. Statist., Volume 39 (1968), pp. 209-214 | DOI | MR | Zbl
Cited by Sources: